Medvedev Dmitry

Senior researcher, PhD (Chemistry)

Scientific interests include design and application of new solid oxide materials for high-temperature electrochemical devices (solid oxide fuel and electrolysis cells, membrane reactors, pump and sensors).

Publication activity: According to the Web of Science database – 93 papers, about 1400 citations, h-index = 21. According to SCOPUS database 96 publications, about 1500 citations, h-index = 22.

CV (Rus) / CV (Eng)

Scientific activity:

.

.

Detailed information on publication activity:

Full bibliographic details Impact factor (IF)
DOI
Remarks
2008
1. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras. Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate. Solid State Ionics. 2008. V.179. № 21–26. P. 887–890. IF=3.699 / Q2
10.1016/j.ssi.2008.02.065

http://doi.org/cjm62s

2. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras. Investigation of the protonic conduction in Sm doped BaCeO3. Journal of Power Sources. 2008. V.181. № 2. P. 207–213. IF=9.794 / Q1
10.1016/j.jpowsour.2008.01.036

http://doi.org/bp6hgq

3. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras. Influence of Сu on the properties of gadolinium-doped barium cerate. Journal of Power Sources. 2008. V.181. № 2. P. 292–296. IF=9.794 / Q1
10.1016/j.jpowsour.2007.11.049

http://doi.org/dn2792

2010
4. Д.А. Медведев, Т.А. Журавлева, А.А. Мурашкина, В.С. Сергеева, Б.Д. Антонов. Электрофизические свойства материалов на основе BaGdCo2O5+d. Журнал Физической химии. 2010. Т. 84. № 9. С. 1777–1781.
Original work
D.A. Medvedev, T. A. Zhuravleva, A. A. Murashkina, V. S. Sergeeva,  B. D. Antonov. Eletrophysical properties of materials based on BaGdCo2O5+d. Russian Journal of Physical Chemistry A. 2010. V. 84. № 9. P. 1623–1627. IF=0.791 / Q4
10.1134/S0036024410090311

http://doi.org/ftp584

Translated
2011
5. D. Medvedev, V. Maragou, T. Zhuravleva, A. Demin, E. Gorbova, P. Tsiakaras. Investigation of the structural and electrical properties of Co-doped BaCe0.9Gd0.1O3–d. Solid State Ionics. 2011. V. 182. № 1. P. 41–46. IF=3.699 / Q2
10.1016/j.ssi.2010.11.008

http://doi.org/b52c5s

6. Е.Ю. Пикалова, А.А. Мурашкина, Д.А. Медведев. Структурные и электрические свойства системы Ce0.8(Sm1–xCax)0.2O2–δ (х = 0.0–1.0). Электрохимия. 2011. Т. 47, № 6. С. 728–737.
Original work
E.Yu. Pikalova, A.A. Murashkina, D.A. Medvedev. Structural and electric properties

of the Ce0.8(Sm1–xCax)0.2O2–δ system (x = 0.0–1.0). Russian Journal of Electrochemistry. 2011. V. 47, № 6, P. 681–689.

IF=1.351 / Q4
10.1134/S1023193511060115.

http://doi.org/fwqf4q

Translated
7. Д.А. Медведев, Е.В. Горбова, А.К. Демин, Б.Д. Антонов. Структура и электрические свойства BaCe0.77–xZrxGd0.2Cu0.03O3–δ. Электрохимия. 2011. Т. 47, № 12. С. 1504–1510.
D.A. Medvedev, E.V. Gorbova, A.K. Demin, B.D. Antonov. Structure and electrical properties of BaCe0.77–xZrxGd0.2Cu0.03O3–δ. Russian Journal of Electrochemistry. 2011. V. 47, № 12, P. 1404–1410. IF=1.351 / Q4
10.1134/S1023193511090138

http://doi.org/fzjcds

Translated
2012
8. A.A. Murashkina, V. Maragou, D. Medvedev, V. Sergeeva, A. Demin, P. Tsiakaras. Single phase materials based on Co-doped SrTiO3 for mixed ionic-electronic conductors applications. Journal of Power Sources. 2012. V. 210. P. 339–344. IF=9.794 / Q1
10.1016/j.jpowsour.2012.02.066

http://doi.org/f32xbr

9. А.А. Мурашкина, В.С. Сергеева, Д.А. Медведев, А.К. Демин. Синтез и исследование структурных, электрохимических и термомеханических свойств твердых растворов состава    Sr1–xGdxTi0.5Fe0.5O3–δ. Перспективные материалы. 2012. Т. 4 . С. 29–35.
Original work
10. A.A. Murashkina, V. Maragou, D. Medvedev, V. Sergeeva, A. Demin, P. Tsiakaras. Electrochemical properties of ceramic membranes based on SrTi0.5Fe0.5O3–δ in reduced atmosphere. International Journal of Hydrogen Energy. 2012. V. 37, № 19. P. 14569–14575. IF=7.139 / Q2
10.1016/j.ijhydene.2012.06.066

http://doi.org/f4cz2x

2013
11. D. Medvedev, V. Maragou, E. Pikalova, A. Demin, P. Tsiakaras. Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. Journal of Power Sources. 2013. V. 221. P. 217–227.

 

IF=9.794 / Q1
10.1016/j.jpowsour.2012.07.120

http://doi.org/cc4k

12. Д.А. Медведев, Е.Ю. Пикалова, А.К. Демин, В.Р. Хрустов, И.В. Николаенко, А.В. Никонов,

В.Б. Малков, Б.Д. Антонов. Наноструктурированные композитные материалы на основе оксида церия и церата бария. Журнал Физической Химии. 2013. Т. 87, № 2. P. 275–283.

Original work
D.A. Medvedev, E.Yu. Pikalova, A.K. Demin, V.R. Khrustov, I.V. Nikolaenko, A.V. Nikonov, V.B. Malkov, B.D. Antonov. Nanostructured composite materials of cerium oxide and barium cerate. Russian Journal of Physical Chemistry A. 2013. V. 87, № 2. Р. 270–277. IF=0.791 / Q4
10.1134/S0036024413020209

http://doi.org/cc4m

Translated
13. А.А. Мурашкина, Д.А. Медведев, В.С. Сергеева, А.К. Демин. Получение водорода методом электрохимической конверсии этанола. Мембраны и Мембранные технологии. 2013. Т. 3, № 1. С. 57–62.
Original work
A. A. Murashkina, D.A. Medvedev, V. S. Sergeeva, A. K. Demin. Hydrogen production by electrochemical reforming of ethanol. Petroleum Chemistry. 2013. V. 53, № 7. P. 489–493. IF=1.258 / Q3
10.1134/S0965544113070128

http://doi.org/cc4n

Translated
2014
14. D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras. BaCeO3: materials development, properties and application. Progress in Materials Science. 2014. V. 60. P. 72–129. IF=48.165 / Q1
10.1016/j.pmatsci.2013.08.001

http://doi.org/b9zm

Review
15. E.Yu. Pikalova, А.А. Murashkina, D.A. Medvedev, P.S. Pikalov, S.V. Plaksin. Microstructure and electrical properties of the composites based on  SrTi0.5Fe0.5O3−δ and Ce0.8(Sm0.8Sr0.2)0.2O2−δ. Solid State Ionics. 2014. V. 262. Р. 640–644. IF=3.699 / Q2
10.1016/j.ssi.2013.10.036

http://doi.org/cc4p

16. E.A. Filonova, A.S. Dmitriev, E.Yu. Pikalova, D.A. Medvedev, P.S. Pikalov. Structural, electrical properties of Sr2Ni0.75Mg0.25MoO6 and its compatibility with solid state electrolytes. Solid State Ionics. 2014. V. 262. Р. 365–369. IF=3.699 / Q2
10.1016/j.ssi.2013.11.036

http://doi.org/cc4q

17. M. Ananyev, A. Gavrilyuk, D. Medvedev, S. Mitri, A. Demin, V. Malkov, P. Tsiakaras. Cu and Gd co-doped BaCeO3 proton conductors: experimental vs SEM image algorithmic-segmentation results. Electrochimica Acta. 2014. V. 125. P. 371–379. IF=7.336 / Q1
10.1016/j.electacta.2013.12.161

http://doi.org/f5z3tp

18. Ю.Г. Лягаева, Д.А. Медведев, А.К. Демин, Т.В. Ярославцева,  С.В. Плаксин, НМ. Поротникова. Особенности получения плотной керамики на основе цирконата бария. Физика и Техника Полупроводников. 2014. Т. 48, № 10.  С. 1388–1393.
Original work
Yu.G. Lyagaeva, D.A. Medvedev,  A.K. Demin, TV. Yaroslavtseva, S.V. Plaksin, N.M. Porotnikova. Preparation features of dense ceramics based on barium zirconate. Semiconductors. 2014. V. 48, № 10. Р. 1353–1358. IF=0.660 / Q4
10.1134/S1063782614100182

http://doi.org/cc4r

Translated
19. D. Medvedev, E. Pikalova, A. Demin, A. Podias, I. Korzun, B. Antonov, P. Tsiakaras. Structural, thermomechanical and electrical properties of new (1−x)Ce0.8Nd0.2O2−δ – xBaCe0.8Nd0.2O3−δ composites. Journal of Power Sources. 2014. V. 267. P. 269–279. IF=9.794 / Q1
10.1016/j.jpowsour.2014.05.070

http://doi.org/cc4s

20. Н.М. Поротникова, М.В. Ананьев, В.А. Еремин, А.С. Фарленков, Д.А. Медведев, А.А. Панкратов,

С.В. Плаксин, Э.Х. Курумчин. Изотопный обмен кислорода композиционного материала LSM–YSZ в условиях длительных испытаний. Электрохимия. 2014. Т. 50, № 7. C. 758–767.

Original work
N. M. Porotnikova,  M. V. Ananyev, V. A. Eremin, A. S. Farlenkov, D.A. Medvedev, A. A. Pankratov,

S. V. Plaksin, E. Kh. Kurumchin. Oxygen isotope exchange in the LSM-YSZ composite under the conditions of long-term tests. Russian Journal of Electrochemistry. 2014. V. 50, № 7. P. 680–689.

IF=1.351 / Q4
10.1134/S102319351407012X

http://doi.org/f6b5bn

Translated
21. A. Murashkina, E. Pikalova, D. Medvedev, A. Demin, P. Tsiakaras. Hydrogen production aided by new (1–x)SrTi0.5Fe0.5O3−δ – Ce0.8(Sm0.8Sr0.2)0.2O2−δ (MIEC) composite membranes. International Journals of Hydrogen Energy. 2014. V. 39, № 24. P. 12472–12479. IF=7.139 / Q2
10.1016/j.ijhydene.2014.06.068

http://doi.org/f6fj34

22. D.A. Medvedev, E.V. Gorbova, A.K. Demin, P. Tsiakaras. Conductivity of Gd-doped BaCeO3 protonic conductor in Н2–Н2О–О2 atmospheres. International Journals of Hydrogen Energy. 2014. V. 36, № 36. P. 21547-21552. IF=7.139 / Q2
10.1016/j.ijhydene.2014.09.019

http://doi.org/f6wg5s

2015
23. D. Medvedev, Yu. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras. Sulphur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources. 2015. V. 273. P. 716–723. IF=9.794 / Q1
10.1016/j.jpowsour.2014.09.116

http://doi.org/f6r5fv

24. S. Mitri, D. Medvedev, S. Kontou, E. Gorbova, A. Demin, P. Tsiakaras. Polarization study of Fe|BaCe0.5Zr0.3Y0.08Yb0.08Cu0.04O3–δ|Fe electrochemical cells in wet H2 atmosphere. International Journal of Hydrogen Energy. 2015. V.40, № 42. P. 14609–14615. IF=7.139 / Q2
10.1016/j.ijhydene.2015.05.020

http://doi.org/f7xc3v

25. Ю.Г. Лягаева, Д.А. Медведев, А.К. Демин, П. Циакарас, О.Г. Резницких. Термическое расширение материалов в системе церато-цирконата бария. Физика Твердого Тела. 2015. Т. 57, № 2. С. 272–276.
Original work
J.G. Lyagaeva, D.A. Medvedev, A.K. Demin, P. Tsiakaras, O.G. Reznitskikh. Thermal expansion of materials in the system of barium cerate–zirconate. Physics of the Solid State. 2015. V. 57, № 2. P. 285–289. IF=0.848 / Q4
10.1134/S1063783415020250

http://doi.org/cc4t

Translated
26. J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Insights on thermal and transport features of BaCe0.8–xZrxY0.2O3–δ proton-conducting materials. Journal of Power Sources. 2015. V. 278. P. 436–444. IF=9.794 / Q1
10.1016/j.jpowsour.2014.12.024

http://doi.org/f64k63

27. Ю.Г. Лягаева, Д.А. Медведев. Структура и транспортные свойства композитных материалов на основе Ce0.8Nd0.2O2–δ и BaCe0.8Nd0.2O3. Chimica Techno Acta. 2015. V. 2, № 1. С. 29–41.
Original work
Ju.G. Lyagaeva, D.A. Medvedev. Structure and transport properties of composite materials on a basis of Ce0.8Nd0.2O2–δ and BaCe0.8Nd0.2O3. Chimica Techno Acta. 2015. V. 2, № 1. P. 28–38.
10.15826/chimtech.2015.2.1.003

http://doi.org/cc4v

Translated
28. Д.А. Медведев, А.А. Мурашкина, А.К. Демин. Формирование плотных электролитов на основе BaCeO3 и BaZrO3 для применения в твердооксидных топливных элементах: роль активного твердофазного спекания. Reviewный Журнал по Химии. 2015. Т. 5, № 3. С. 221–242.
Original work /Review
D.A. Medvedev, A.A. Murashkina, A.K. Demin. Formation of dense electrolytes on the base of BaCeO3 and BaZrO3 for solid oxide fuel cells application: the role of the solid-state reactive sintering method. Review Journal of Chemistry. 2015. V. 5, № 3. Р. 193–213.
10.1134/S2079978015030024

http://doi.org/b9zn

Translated
29. J. Lyagaeva, D. Medvedev, E. Filonova, A. Demin, P. Tsiakaras. Textured BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Y, Gd, Sm, Nd and La) ceramics obtained by the aid of solid-state reactive sintering method. Scripta Materialia. 2015. V. 109. P. 34–37. IF=6.302 / Q1
10.1016/j.scriptamat.2015.07.012

http://doi.org/cc4w

2016
30. Е.А. Филонова, Л.С. Скутина, Д.А. Медведев. Фазовые переходы и термическое расширение в твердых растворах Sr2–xBaxNiMoO6 и Sr2Ni1–yZnyMoO6. Неорганические материалы. 2016. Т. 52, № 1. С. 60–65.
E.A. Filonova, L.S. Skutina, D.A. Medvedev. Phase transitions and thermal expansion of Sr2–xBaxNiMoO6 and Sr2Ni1–yZnyMoO6 solid solutions. Inorganic Materials. 2016. V. 52, № 1. P. 57–62. IF=0.907 / Q4
10.1134/S0020168516010076

http://doi.org/f74f7r

Translated
31. D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, P. Tsiakaras. Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science. 2016. V. 75. P. 38–79. IF=48.165 / Q1
10.1016/j.pmatsci.2015.08.001

http://doi.org/b9zk

Review
32. A. Kalyakin, J. Lyagaeva, D. Medvedev, A. Volkov, A. Demin, P. Tsiakaras. Characterization of proton-conducting electrolyte based on La0.9Sr0.1YO3–δ and its application in a hydrogen amperometric sensor. Sensors and Actuators B: Chemical. 2016. V. 225. P. 446–452. IF=9.221 / Q1
10.1016/j.snb.2015.11.064

http://doi.org/cc4x

33. E. Pikalova, D. Medvedev. Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO3-based Protonic Ceramic Fuel Cell. International Journal of Hydrogen Energy. 2016. V. 41, № 6. P. 4016–4025. IF=7.139 / Q2
10.1016/j.ijhydene.2015.11.092

http://doi.org/f8dnmn

34. J. Lyagaeva, B. Antonov, L. Dunyushkina, V. Kuimov, D. Medvedev, A. Demin,  P. Tsiakaras. Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications. Electrochimica Acta. 2016. V. 192. P. 80–88. IF=7.336 / Q1
10.1016/j.electacta.2016.01.144

http://doi.org/cc4z

35. A. Kalyakin, A. Volkov, J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Combined amperometric and potentiometric hydrogen sensors based on BaCe0.7Zr0.1Y0.2O3−δ proton-conducting ceramic. Sensors and Actuators B: Chemical. 2016. V. 231. P. 175–182. IF=9.221 / Q1
10.1016/j.snb.2016.03.017

http://doi.org/b9zp

36. N. Danilov, G. Vdovin, O. Reznitskikh, D. Medvedev, A. Demin, P. Tsiakaras. Physicо-chemical characterization and transport features of proton-conducting Sr-doped LaYO3 electrolyte ceramics. Journal of the European Ceramic Society. 2016. V. 36, № 11. P. 2795–2800. IF=6.364 / Q1
10.1016/j.jeurceramsoc.2016.04.018

http://doi.org/cc43

37. Ю.Г. Лягаева, Г.К. Вдовин, И.В. Николаенко, Д.А. Медведев, А.К. Демин. Модифицирование BaCe0.5Zr0.3Y0.2O3–δ оксидом меди: влияние на структурные и транспортные свойства. Физика и Техника Полупроводников. 2016. Т. 50, № 6.  С. 854–858.
Original work
Yu.G. Lyagaeva, G.K. Vdovin, I.V. Nikolaenko, D.A. Medvedev, A.K. Demin. The modification of BaCe0.5Zr0.3Y0.2O3–δ with copper oxide: effect on the structural and transport properties. Semiconductors. 2016. V. 50, № 6. P. 839–843. IF=0.660 / Q4
10.1134/S1063782616060142

http://doi.org/cc42

Translated
38. D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin, P. Tsiakaras. A tape calendaring method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochimica Acta. 2016. V. 210. P. 681–688. IF=7.336 / Q1
10.1016/j.electacta.2016.05.197

http://doi.org/b9zs

39. N. Kochetova, I. Animitsa, D. Medvedev, A. Demin, P. Tsiakaras. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Advances. 2016. V. 6, № 77. P. 73222–73268. IF=4.036 / Q2
10.1039/c6ra13347a

http://doi.org/b9zj

Review
40. J. Lyagaeva, N. Danilov, G. Vdovin, J. Bu, D. Medvedev, A. Demin, P. Tsiakaras. A new Dy-doped BaCeO3–BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. Journal of Materials Chemistry A. 2016. V. 4, № 40. P. 15390–15399. IF=14.511 / Q1
10.1039/C6TA06414K

http://doi.org/b9zr

2017
41. J. Lyagaeva, D. Medvedev, E. Pikalova, S. Plaksin, A. Brouzgou, A. Demin, P. Tsiakaras. A detailed analysis of thermal and chemical compatibility of cathode materials suitable for BaCe0.8Y0.2O3–δ and BaZr0.8Y0.2O3–δ proton electrolytes for solid oxide fuel cell application. International Journal of Hydrogen Energy. 2017. V. 42, № 3. P. 1715–1723. IF=7.139 / Q2
10.1016/j.ijhydene.2016.07.248

http://doi.org/f9vcgx

42. Е.Ю. Пикалова, Д.А. Медведев, А.Ф. Хасанов. Структура, стабильность и термомеханические свойства Ca-замещенного Pr2NiO4+δ. Физика и Техника Полупроводников. 2017. Т. 59, № 4.  С. 679–687.  
Original work
E.Yu. Pikalova, D.A. Medvedev, A.F. Hasanov. Structure, stability, and thermomechanical properties

of Ca-substituted Pr2NiO4+δ. Physics the Solid State. 2017. V. 59, № 4. P. 694–702.

IF=0.848 / Q4
10.1134/S1063783417040187

http://doi.org/f96crd

Translated
43. N. Danilov, J. Lyagaeva, A. Kasyanova, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3–δ. Ionics. 2017. V. 23, № 3. P. 795–801. IF=2.961 / Q2
10.1007/s11581-016-1961-1

http://doi.org/cc44

44. D. Medvedev, A. Kalyakin, A. Volkov, A. Demin, P. Tsiakaras. Electrochemical moisture analysis by combining oxygen- and proton-conducting ceramic electrolytes. Electrochemistry Communications. 2017. V. 76. P. 55–58. IF=5.443 / Q2
10.1016/j.elecom.2017.01.003

http://doi.org/f9x367

45. A. Volkov, E. Gorbova, A. Vylkov, D. Medvedev, A. Demin, P. Tsiakaras. Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review. Sensors and Actuators: B. Chemical. 2017. V. 244. P. 1004–1015. IF=9.221 / Q1
10.1016/j.snb.2017.01.097

http://doi.org/f93vt6

Review
46. E.P. Antonova, A.A. Kolchugin, E.Yu. Pikalova, D.A. Medvedev, N.M. Bogdanovich. Development of electrochemically active electrodes for BaCe0.89Gd0.1Cu0.01O3–δ proton-conducting electrolyte. Solid State Ionics. 2017. V. 306. P. 55–61. IF=3.699 / Q2
10.1016/j.ssi.2017.02.001

http://doi.org/cc45

47. L.S. Skutina, A.I. Vylkov, D.A. Medvedev, E.A. Filonova. Features of structural, thermal and electrical properties of Mo-based composite materials as fuel electrodes for high-temperature applications. Journal of Alloys and Compounds. 2017. V. 705. P. 854–861. IF=6.371 / Q1
10.1016/j.jallcom.2017.02.193

http://doi.org/cc46

48. J. Lyagaeva, N. Danilov, D. Korona, A. Farlenkov, D. Medvedev, A. Demin, I. Animitsa, P. Tsiakaras. Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method. Ceramics International. 2017. V. 43, № 9. P. 7184–7192. IF=5.532 / Q1
10.1016/j.ceramint.2017.03.006.

http://doi.org/f9847s

49. A.A. Murashkina, E.Yu. Pikalova, D.A. Medvedev. Gd-doped SrTi0.5Fe0.5O3δ mixed ionic-electronic conductors: structural, thermal and electrical properties. Ionics. 2017. V. 23, № 9. P. 2351–2357. IF=2.961 / Q2
10.1007/s11581-017-2075-0

http://doi.org/cc47

50. N. Danilov, J. Lyagaeva, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. An electrochemical approach for analyzing electrolyte transport properties and their effect on protonic ceramic fuel cell performance. ACS Applied Materials & Interfaces. 2017. V. 9, № 32. P. 26874–26884. IF=10.383 / Q1
10.1021/acsami.7b07472

http://doi.org/ccwr

51. N.A. Danilov, A.P. Tarutin, J.G. Lyagaeva, E.Yu. Pikalova, A.A Murashkina, D.A. Medvedev, M.V. Patrakeev, A.K. Demin. Affinity of YBaCo4O7+δ-based layered cobaltites with protonic conductors of cerate-zirconate family. Ceramics International. 2017. V. 43, № 17. P. 15418–15423. IF=5.532 / Q1
10.1016/j.ceramint.2017.08.083

http://doi.org/ccwq

52. J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev, A. Demin, P. Tsiakaras. BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta. 2017. V. 251. P. 554–561. IF=7.336 / Q1
10.1016/j.electacta.2017.08.149

http://doi.org/ccwp

53. N. Danilov, E. Pikalova, J. Lyagaeva, B. Antonov, D. Medvedev, A. Demin, P. Tsiakaras. Grain and grain boundary transport in BaCe0.5Zr0.3Ln0.2O3−δ (Ln – Y or lanthanide) electrolytes attractive for protonic ceramic fuel cells application. Journal of Power Sources. 2017. V. 366. P. 161–168. IF=9.794 / Q1
10.1016/j.jpowsour.2017.09.021

http://doi.org/cc34

2018
54. A. Kalyakin, A. Volkov, A. Vylkov, E. Gorbova, D. Medvedev, A. Demin, P. Tsiakaras. An electrochemical method for the determination of concentration and diffusion coefficient of ammonia‑nitrogen gas mixtures. Journal of Electroanalytical Chemistry. 2018. V. 808. P. 133–136. IF=4.598 / Q1
10.1016/j.jelechem.2017.12.001

http://doi.org/cg25

55. Ю.Г. Лягаева, Н.А. Данилов, М.Ю. Горшков, Г.К. Вдовин, Б.Д. Антонов, Д.А. Медведев, A.K. Демин. Функциональность никелитов лантана, неодима и празеодима как перспективных электродных систем для протонпроводящих электролитов. Журнал прикладной химии. 2018. Т. 91. № 4. C. 513–521.  
Original work
Yu.G. Lyagaeva, N.A. Danilov, M.Yu. Gorshkov, G.K. Vdovin, B.D. Antonov, D.A. Medvedev, A.K. Demin. Functionality of lanthanum, neodymium, and praseodymium nickelates as promising electrode systems for proton-conducting electrolytes. Russian Journal of Applied Chemistry. 2018. V. 91. № 4. P. 583–590. IF=0.869 / Q4
10.1134/S1070427218040080

http://doi.org/crvg

Translated
56. А.В. Касьянова, Ю.Г. Лягаева, Н.А. Данилов, С.В. Плаксин, А.С. Фарленков, Д.А. Медведев, А.К. Демин. Керамические и транспортные характеристики электролитов на основе Mg-допированного LaYO3. Журнал прикладной химии. 2018. Т. 91. № 5. C. 143–150.  
A.V. Kasyanova, J.G. Lyagaeva, N.A. Danilov, S.V. Plaksin, A.S. Farlenkov, D.A. Medvedev, A.K. Demin. Ceramic and transport characteristics of electrolytes based on Mg-doped LaYO3. Russian Journal of Applied Chemistry. 2018. V. 91. № 5. P. 770–777. IF=0.869 / Q4
10.1134/S1070427218050075

http://doi.org/csgk

Translated
57. J. Lyagaeva, N. Danilov, A. Tarutin, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3–δ. Dalton Transactions. 2018. V. 47. № 24. P. 8149–8157. IF=4.569 / Q1
10.1039/c8dt01511b

http://doi.org/crgk

58. N. Danilov, J. Lyagaeva, G. Vdovin, E. Pikalova, D. Medvedev. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode. Energy Conversion and Management. 2018. V. 172.  P. 129–137. IF=11.533 / Q1
10.1016/j.enconman.2018.07.014

http://doi.org/crzd

59. N.A. Danilov, J.G. Lyagaeva, D.A. Medvedev, A.K. Demin, P. Tsiakaras. Transport properties of highly dense proton-conducting BaCe0.8–xZrxDy0.2O3–δ materials in low- and high-temperature ranges. Electrochimica Acta. 2018. V. 284. P. 551–559. IF=7.336 / Q1
10.1016/j.electacta.2018.07.179

http://doi.org/cskt

60. N. Danilov, A. Tarutin, J. Lyagaeva, G. Vdovin, D. Medvedev. CO2-promoted hydrogen production in a protonic ceramic electrolysis cell. Journal of Materials Chemistry A.  2018. V. 6. № 34. P. 16341–16345. IF=14.511 / Q1
10.1039/C8TA05820B

http://doi.org/cs3n

Correction: 10.1039/C8TA90204F
61. W. Wang, D. Medvedev, Z. Shao. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Advanced Functional Materials. 2018. V. 28, № 48. No. 1802592. IF=19.924 / Q1
10.1002/adfm.201802592

http://doi.org/cwjr

Review
2019
62. L. Hakimova, A. Kasyanova, A. Farlenkov, J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Effect of isovalent substitution of La3+ in Ca-doped LaNbO4 on the thermal and electrical properties. Ceramics International. 2019. V. 45, № 1. P. 209–215. IF=5.532 / Q1
10.1016/j.ceramint.2018.09.153

http://doi.org/ctzt

63. A.S. Kalyakin, J.G. Lyagaeva, A.Yu. Chuikin, A.N. Volkov, D.A. Medvedev. A high temperature electrochemical sensor based on CaZr0.95Sc0.05O3–δ for humidity analysis in oxidation atmospheres. Journal of Solid State Electrochemistry. 2019. V. 23, № 1. P. 73–79. IF=2.747 / Q3
10.1007/s10008-018-4108-7

http://doi.org/cvdf

64. N. Danilov, J. Lyagaeva, G. Vdovin, D. Medvedev. Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes. Applied Energy. 2019. V. 237. P. 924–934. IF=11.446 / Q1
10.1016/j.apenergy.2019.01.054

http://doi.org/czv9

65. V. Sadykov, A. Shmakov, D. Medvedev, E. Sadovskaya, E. Pikalova, N. Eremeev, V. Belyaev, Y. Lyagaeva, Z. Vinokurov. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy. Solid State Ionics. 2019. V. 333. P. 30–37. IF=3.699 / Q2
10.1016/j.ssi.2019.01.014

http://doi.org/czxw

66.  L.S. Skutina, A.A. Vylkov, D.K. Kuznetsov, D.A. Medvedev, V.Ya. Shur. Tailoring Ni and Sr2Mg0.25Ni0.75MoO6−δ cermet compositions for designing the fuel electrodes of solid oxide electrochemical cells. Energies. 2019. V. 12, № 12. No. 2394. IF=3.252 / Q3
10.3390/en12122394

http://doi.org/c7kb

Open Access
67. A. Tarutin, J. Lyagaeva, A. Farlenkov, S. Plaksin, G. Vdovin, A. Demin, D. Medvedev. A reversible protonic ceramic cell with symmetrically designed Pr2NiO4+δ-based electrodes: fabrication and electrochemical features. Materials. 2019. V. 12. № 1. No. 118. IF=3.748 / Q1
 Open Access:

10.3390/ma12010118

http://doi.org/cx8z

Preprint, OA: 10.20944/preprints201811.0572.v2

http://doi.org/cx8x

68. A.S. Kalyakin, J.Yu. Lyagaeva, A.N. Volkov, D.A. Medvedev. Unusual oxygen detection by means of a solid state sensor based on a CaZr0.9In0.1O3–δ proton-conducting electrolyte. Journal of Electroanalytical Chemistry. 2019. V. 844. P. 23–26. IF=4.598 / Q1
10.1016/j.jelechem.2019.05.003

http://doi.org/c5ct

69. A.P. Tarutin, J.G. Lyagaeva, A.S. Farlenkov, A.I. Vylkov, D.M. Medvedev. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceramics International. 2019. V. 45. 13. P. 16105–16112. IF=5.532 / Q1
10.1016/j.ceramint.2019.05.127

http://doi.org/c5p8

Correction: 10.1016/j.ceramint.2019.08.160
70. E. Pikalova, A. Kolchugin, M. Koroleva, G. Vdovin, A. Farlenkov, D. Medvedev. Functionality of an oxygen Ca3Co4O9+δ electrode for reversible solid oxide electrochemical cells based on proton-conducting electrolytes. Journal of Power Sources 2019. V. 438. No. 226996. IF=9.794 / Q1
10.1016/j.jpowsour.2019.226996

http://doi.org/c9dw

71. G. Vdovin, A. Rudenko, B. Antonov, V. Malkov, A. Demin, D. Medvedev. Manipulating the grain boundary properties of BaCeO3-based ceramic materials through sintering additives introduction. Chimica Techno Acta. 2019. V. 6, № 2. P. 38–45.
10.15826/chimtech.2019.6.2.01

http://doi.org/c95d

Open Access
72. A. Kasyanova, L. Tarutina, J. Lyagaeva, G. Vdovin, D. Medvedev, A. Demin. Thermal and electrical properties of highly dense ceramic materials based on co-doped LaYO3. JOM. 2019. V. 71. № 11. P. 3789–3795. IF=2.597 / Q2
10.1007/s11837-019-03498-5

http://doi.org/c5p3

73. D. Medvedev. Trends in research and development of protonic ceramic electrolysis cells. International Journal of Hydrogen Energy. 2019. V. 44. № 49. P. 26711–26740. IF=7.139 / Q2
10.1016/j.ijhydene.2019.08.130

http://doi.org/dbb9

74. J.G. Lyagaeva, G.K. Vdovin, D.A. Medvedev. Distinguishing bulk and grain boundary transport of a proton-conducting electrolyte by combining equivalent circuit scheme and distribution of relaxation times analyses. Journal of Physical Chemistry C. 2019. V. 123. № 36. P. 21993–21997. IF=4.177 / Q2
10.1021/acs.jpcc.9b05705

http://doi.org/c9wh

75. A.V. Kasyanova, A.O. Rudenko, N.G. Molchanova, A.I. Vylkov, J.G. Lyagaeva, D.A. Medvedev, Transport properties of iron-doped BaZr0.9Yb0.1O3–δ. Mendeleev Communications. 2019. V. 29. № 6. P. 710–712. IF=1.837 / Q3
10.1016/j.mencom.2019.11.038

http://doi.org/dftj

2020
76. A. Tarutin, A. Kasyanova, J. Lyagaeva, G. Vdovin, D. Medvedev. Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes. Journal of Energy Chemistry. 2020. V. 40. P. 65–74. IF=13.599 / Q1
10.1016/j.jechem.2019.02.014

http://doi.org/c3br

77. A.V. Kasyanova, J.G. Lyagaeva, A.S. Farlenkov, A.I. Vylkov, S.V. Plaksin, D.A. Medvedev, A.K. Demin. Densification, morphological and transport properties of functional La1–xBaxYbO3–δ ceramic materials. Journal of the European Ceramic Society. 2020. V. 40. № 1. P. 78–84. IF=6.364 / Q1
10.1016/j.jeurceramsoc.2019.09.005

http://doi.org/c977

78. A.V. Kasyanova, L.R. Tarutina, A.O. Rudenko, J.G. Lyagaeva, D.A. Medvedev. Ba(Ce,Zr)O3-based electrodes for protonic ceramic electrochemical cells: towards highly compatible functionality and triple-conducting behavior. Russian Chemical Reviews. 2020. V. 89, № 6. P. 667–692. IF=7.460 / Q1
10.1070/RCR4928

http://doi.org/dknk

79. T.M. Butt, N.K. Janjua, A. Mujtaba, S.A. Zaman, R. Ansir, A. Rafique, P. Sumreen, M. Mukhtar, M. Pervaiz, A. Yaqub, Z. Akhter, T. Yasin, G. Abbas, R. Raza, D. Medvedev. B-Site doping in lanthanum cerate nanomaterials for water electrocatalysis. Journal of the Electrochemical Society. 2020. V. 167, № 2. No. 026503. IF=4.386 / Q1
10.1149/1945-7111/ab63c0

http://doi.org/dknj

80. E. Pikalova, A. Kolchugin, N. Bogdanovich, D.A. Medvedev, J. Lyagaeva, I. Vedmid, M. Ananyev, S. Plaksin, A. Farlenkov. Stability of Pr2xCaxNiO4+δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes. International Journal of Hydrogen Energy. 2020. V. 45, № 25. P. 13612–13624. IF=7.139 / Q2
10.1016/j.ijhydene.2018.06.023

http://doi.org/crvf

81. A.P. Tarutin, G.K. Vdovin, D.A. Medvedev, A.A. Yaremchenko. Fluorine-containing oxygen electrodes of the nickelate family for proton-conducting electrochemical cells. Electrochimica Acta. 2020. V. 337, No. 135808. IF=7.336 / Q1
10.1016/j.electacta.2020.135808

http://doi.org/dkxn

82. A. Tarutin, N. Danilov, J. Lyagaeva, D. Medvedev. One-step fabrication of protonic ceramic fuel cells by a convenient tape-calendering method. Applied Sciences. 2020.  V. 10, № 7. No. 2481. IF=2.838 / Q2
10.3390/app10072481

http://doi.org/drcp

Open Access
83. L.P. Putilov, N.A. Shevyrev, A.M. Mineev, A.S. Farlenkov, D.A. Medvedev, V.I. Tsidilkovski. Hydration of acceptor-doped BaSnO3: implications of the bound states of ionic defects. Acta Materialia. 2020. V. 190. P. 70–80. IF=9.206 / Q1
10.1016/j.actamat.2020.03.010

http://doi.org/dp3t

84. L.R. Tarutina, G.K. Vdovin, J.G. Lyagaeva, D.A. Medvedev. BaCe0.7–xZr0.2Y0.1FexO3–δ derived from proton-conducting electrolytes: A way of designing chemically compatible cathodes for solid oxide fuel cells. Journal of Alloys and Compounds. 2020.  V. 381. No. 154895.

 

 

IF=6.371 / Q1
10.1016/j.jallcom.2020.154895

http://doi.org/dqdz

85. L.R. Tarutina, J.G. Lyagaeva, A.S. Farlenkov, A.I. Vylkov, G.K. Vdovin, A.A. Murashkina, A.K. Demin, D.A. Medvedev. Doped (Nd,Ba)FeO3 oxides as potential electrodes for symmetrically-designed protonic ceramic electrochemical cells. Journal of Solid State Electrochemistry. 2020. V. 24, № 7. P. 1453–1462. IF=2.747 / Q3
10.1007/s10008-020-04522-4

http://doi.org/dmp9

86. D. Medvedev, S. Ricote. Electrochemistry of proton-conducting ceramic materials and cells. Journal of Solid State Electrochemistry. 2020. V. 24, № 7. P. 1445–1446. IF=2.747 / Q3
10.1007/s10008-020-04655-6

http://doi.org/dwfv

Editorial
87. A.P. Tarutin, M.Yu. Gorshkov, I.N. Bainov, G.K. Vdovin, A.I. Vylkov, J.G. Lyagaeva, D.A. Medvedev, Barium-doped nickelates Nd2–xBaxNiO4+δ as promising electrode materials for protonic ceramic electrochemical cells, Ceramics International. 2020. V. 46, № 15. P. 24335–24364. IF=5.532 / Q1
10.1016/j.ceramint.2020.06.217

http://doi.org/dzrq

88. D. Medvedev. Distribution of relaxation time analysis for solid state electrochemistry. Electrochimica Acta. 2020. V. 360, No. 137034. IF=7.336 / Q1
10.1016/j.electacta.2020.137034

https://doi.org/d8d3

Editorial
2021
89. A.S. Kalyakin, D.A. Medvedev, A.N. Volkov. Electrochemical sensors based on proton-conducting electrolytes for determination of concentration and diffusion coefficient of CO2 in inert gases. Chemical Engineering Science. 2021. V. 229. No. 116046. IF=4.889 / Q2
10.1016/j.ces.2020.116046

http://doi.org/d6w5

90. A.P. Tarutin, J.G. Lyagaeva, D.A. Medvedev, L. Bi, A.A. Yaremchenko. Recent advances in layered Ln2NiO4+δ nickelates: fundamentals and prospects for their applications in protonic ceramic fuel and electrolysis cells. Journal of Materials Chemistry A. 2021. V. 9. № 1. P. 154–195. IF=14.511 / Q1
10.1039/D0TA08132A

https://doi.org/fpz4

Review
91. А.В. Касьянова, А.О. Руденко, Ю.Г. Лягаева, Д.А. Медведев. Лантансодержащие протонные электролиты со структурой перовскита. Мембраны и Мембранные Технологии. 2021. Т. 11, № 2. C. 83–109.
10.1134/S221811722102005X

https://doi.org/f5dd

A.V. Kasyanova, A.O. Rudenko, Yu.G. Lyagaeva, D.A. Medvedev. Lanthanum-containing proton-conducting electrolytes with a perovskite structure. Membranes and Membrane Technologies. 2021. V. 3, № 2. P. 73–97.
10.1134/S2517751621020050

https://doi.org/f8mh

Review
92. L. Skutina, E. Filonova, D. Medvedev, A. Maignan. Undoped Sr2MMoO6 double perovskite molybdates (M = Ni, Mg, Fe) as promising anode materials for solid oxide fuel cells. Materials. 2021. V. 14, № 7. No. 1715. IF=3.748 / Q1
10.3390/ma14071715

https://doi.org/f45k

Open Access / Review
93. L.R. Tarutina, G.K. Vdovin, J.G. Lyagaeva, D.A. Medvedev. Comprehensive analysis of oxygen transport properties of a BaFe0.7Zr0.2Y0.1O3–δ-based mixed ionic-electronic conductor. Journal of Membrane Science. 2021. V. 624. No. 119125. IF=10.530 / Q1
10.1016/j.memsci.2021.119125

https://doi.org/ftsv

94. L.S. Skutina, A.I. Vylkov, I.N. Bainov, K.A. Chistyakov, D.K. Kuznetsov, O.B. Pavlenko, D.A. Medvedev. Catalytic properties of Sr2Ni0.75Mg0.25MoO6–δ based composites for application in hydrocarbon-fueled solid oxide fuel cells. International Journal of Hydrogen Energy. 2021. V. 46, № 32. P. 16899–16906. IF=7.139 / Q2
10.1016/j.ijhydene.2021.03.159

https://doi.org/f7d2

95. A.P. Tarutin, Y.G. Lyagaeva, A.I. Vylkov, M.Yu. Gorshkov, G.K. Vdovin, D.A. Medvedev. Electrochemical performance of Pr2(Ni,Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces. Journal of Materials Science & Technology. 2021. V. 93. P. 157–168. IF=10.319 / Q1
10.1016/j.jmst.2021.03.056

https://doi.org/gcr6

96. D.A. Medvedev. The PCEE2020 special issue: Physical chemistry and electrochemistry of molten and solid electrolytes. International Journal of Hydrogen Energy. 2021. V. 46, № 32. P. 16847. IF=7.139 / Q2
10.1016/j.ijhydene.2021.03.071

https://doi.org/f5dc

Editorial
97. A. Kasyanova, A. Tarutin, J. Lyagaeva, X.-Z. Fu, D. Medvedev. Double-doped YFeO3 as new electrodes for protonic ceramic fuel cells. Ceramics International. 2021. V. 47, № 16. P. 22821–22829. IF=5.532 / Q1
10.1016/j.ceramint.2021.04.300

https://doi.org/gj4m

98. A.M. Mineev, I.A. Zvonareva, D.A. Medvedev, Z. Shao. Maintaining pronounced proton transportation of solid oxides prepared with a sintering additive. Journal of Materials Chemistry A. 2021. V. 9, № 25. P. 14553–14565. IF=14.511 / Q1
10.1039/D1TA03399A

https://doi.org/gj4j

 
99. I.A. Zvonareva, L.R. Tarutina, G.K. Vdovin, J.G. Lyagaeva, A.R. Akhmadeev, D.A. Medvedev. Heavily Sn-doped barium cerates BaCe0.8–xSnxYb0.2O3–δ: correlations between composition and ionic transport. Ceramics International. 2021. V. 47, № 18. P. 26391–26399. IF=5.532 / Q1
10.1016/j.ceramint.2021.06.050

https://doi.org/gj4k

100. D.A. Medvedev. Current drawbacks of proton-conducting ceramic electrolytes: how to overcome them for real electrochemical purposes. Current Opinion in Green and Sustainable Chemistry. 2021. V. 32. No. 100549. IF=8.843 / Q1
10.1016/j.cogsc.2021.100549

https://doi.org/gr9h

Review
101. Y. Fan, X. Xi, J. Li, Q. Wang, M.-M. Li, L.-J. Wang, D. Medvedev, J.-L. Luo, X.-Z. Fu. In-situ exsolved FeNi nanoparticles on stable perovskite oxides for co-production of ethylene and power from ethane in proton-conducting fuel cells. Electrochimica Acta. 2021. V. 393. No. 139096. IF=7.336 / Q1
10.1016/j.electacta.2021.139096

https://doi.org/grkd

102. Y. Fan, X. Xi, J. Li, Q. Wang, K. Xiang, D. Medvedev, J.L. Luo, X.-Z. Fu. Emerging anode materials architectured with NiCoFe ternary alloy nanoparticles for ethane-fueled protonic ceramic fuel cells. Journal of Power Sources. 2021. V. 515. No. 230634. IF=9.794 / Q1
10.1016/j.jpowsour.2021.230634

https://doi.org/g268

103. А.В. Шляхтина, Н.В. Горшков, И.В. Колбанев, К.И. Шефер, А.В. Касьянова, Д.А. Медведев. Электрофизические свойства Gd2Zr2O7, допированного бериллием. Неорганические Материалы. 2021. Т. 57, № 11. P. 1253–1263.
10.31857/S0002337X21110117

https://doi.org/hbjz

Original article
A.V. Shlyakhtina, N.V. Gorshkov, I.V. Kolbanev, K.I. Shefer, A.V. Kas’yanova, D.A. Medvedev. Electrical Properties of Beryllium-Doped Gd2Zr2O7. Inorganic Materials. 2021. V. 57, № 11. P. 1184–1193. IF=0.864 / Q4
10.1134/S002016852111011X

https://doi.org/g8ps

Translated version
2022
104. Y. Fan, X. Xi, J. Li, Q. Wang, K. Xiang, D. Medvedev, J.L. Luo, X.-Z. Fu. Barium-Doped Sr2Fe1.5Mo0.5O6–δ perovskite anode materials for protonic ceramic fuel cells for ethane conversion. Journal of the American Ceramic Society. 2022. V. 105, № 5. P. 3613–3624. IF=4.186 / Q1
10.1111/jace.18329

https://doi.org/hcdc

105. I.A. Zvonareva, A.V. Kasyanova, A.P. Tarutin, G.K. Vdovin, J.G. Lyagaeva, D.A. Medvedev. Enhanced transport properties of Sn-substituted proton-conducting BaZr0.8Sc0.2O3–δ ceramic materials. Journal of the American Ceramic Society. 2022. V. 105, № 3.P. 2105–2115. IF=4.186 / Q1
10.1111/jace.18224

https://doi.org/g678

106. I. Zvonareva, X.-Z. Fu, D. Medvedev, Z. Shao. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy & Environmental Science. 2022. V. 15, № 2. P. 439–465. IF=39.714 / Q1
10.1039/D1EE03109K

https://doi.org/g5mk

Review
107. B. Choudhary, S. Anwar, D.A. Medvedev, L. Besra, S. Anwar. Effect of sintering temperature on the transport properties of La2Ce2O7 ceramic materials. Ceramics International. 2022. V. 48, № 5. P. 6758–6766. IF=5.532 / Q1
10.1016/j.ceramint.2021.11.227

https://doi.org/g677

108. A.I. Klyndyuk, E.A. Chizhova , D.S. Kharytonau , D.A. Medvedev. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials. 2022. V. 15, № 1. No. 141. IF=3.748 / Q1
10.3390/ma15010141

https://doi.org/hbjx

Review
109. A. Tarutin, A. Kasyanova, G. Vdovin, J. Lyagaeva, D. Medvedev. Nickel-containing perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Со0.6O3–δ, as potential electrodes for protonic ceramic electrochemical cells. Materials. 2022. V. 15, № 6. No. 2166. IF=3.748 / Q1
10.3390/ma15062166

https://doi.org/hk5k

110. A.V. Shlyakhtina, N.V. Lyskov, G.E. Nikiforova, A.V. Kasyanova, G.A. Vorobieva, I. V. Kolbanev, D.N. Stolbov, D.A. Medvedev. Proton conductivity of La2(Hf2–xLax)O7–x/2 “stuffed” pyrochlores. Applied Sciencies. 2022. V. 12, № 9. No. 4342. IF=2.838 / Q2
10.3390/app12094342

https://doi.org/hthv

111. N. Tarasova, A. Galisheva, I. Animitsa, K. Belova, A. Egorova, E. Abakumova, D. Medvedev. Layered perovskites BaM2In2O7 (M = La, Nd): from the structure to the ionic (O2–, H+) conductivity. Materials. 2022. V. 15, № 10. No. 3488. IF=3.748 / Q1
10.3390/ma15103488

https://doi.org/hv9c

112. A. Kalyakin, D. Medvedev, A. Volkov. Electrochemical zirconia-based sensor for measuring hydrogen diffusion in inert gases. Journal of The Electrochemical Society. 2022. V. 169, № 5. No. 057530. IF=4.386 / Q1
10.1149/1945-7111/ac725d

https://doi.org/hv9b

113. I.A. Zvonareva, A.М. Mineev, N.A. Tarasova, X.-Z. Fu, D.A. Medvedev. High-temperature transport properties of BaSn1–xScxO3–δ ceramic materials as promising electrolytes for protonic ceramic fuel cells. Journal of Advanced Ceramics. 2022. V. 11, № 7. P. 1131–1143. IF=11.534 / Q1
10.1007/s40145-022-0599-x

https://doi.org/h9ng

114. E. Filonova, D. Medvedev. Recent progress in the design, characterisation and application of LaAlO3– and LaGaO3-based solid oxide fuel cell electrolytes. Nanomaterials. 2022. V. 12, № 12. No. 1991. IF=5.719 / Q1
10.3390/nano12121991

https://doi.org/h9nh

Review
115. D.A. Medvedev. Introducing our new Editorial Board Members. Chimica Techno Acta. 2022. V. 9, № 4. No. 202294E
10.15826/chimtech.2022.9.4.E

https://doi.org/h9nj

Editorial
116. N. Tarasova, A. Galisheva, I. Animitsa, D. Korona, E. Abakumova, D. Medvedev. Novel mixed oxygen-electronic conductors based on BaLa2In2O7 with two-layer Ruddlesden-Popper structure. Ceramics International. 2022. V. 48, № 23A. P. 35376–35385. IF=5.532 / Q1
10.1016/j.ceramint.2022.08.139

https://doi.org/h9nk

117. G.N. Starostin, I.A. Zvonareva, D.A. Medvedev, S.V. Zvonarev. Comparing the luminescence properties of ZnAl2O4 synthesized by citrate-nitrate auto-combustion and solid-state synthesis routes. Ceramics International. 2022. V. 48, № 23A. P. 35606–35613. IF=5.532 / Q1
10.1016/j.ceramint.2022.08.277

https://doi.org/h9qd

118. A.P. Tarutin, S.A. Baratov, D.A. Medvedev. Modernized synthesis technique of Pr2NiO4+δ-based complex oxides using low-temperature salt melts. Materials. 2022. V. 15, № 17. No. 6148. IF=3.748 / Q1
10.3390/ma15176148

https://doi.org/jbns

119. I.A. Zvonareva, G.N. Starostin, M.T. Akopian, N.A. Tarasova, D.A. Medvedev. Ba2–xLaxSnO4+δ layered barium stannate materials: Synthesis, electronic transport, and chemical stability. Journal of Alloys and Compounds. 2022. V. 928. No. 167170. IF=6.371 / Q1
10.1016/j.jallcom.2022.167170

https://doi.org/jcjm

120. N. Tarasova, A. Bedarkova, I. Animitsa, K. Belova, E. Abakumova, P. Cheremisina, D. Medvedev. Oxygen ion and proton transport in alkali-earth doped layered perovskites based on BaLa2In2O7. Inoganics. 2022. V. 10, № 10. No. 161. IF=3.149 / Q2
10.3390/inorganics10100161

 

121. N.A. Tarasova, I.E. Animitsa, A.O. Galisheva, D.A. Medvedev. Layered and hexagonal perovskites as novel classes of proton-conducting solid electrolytes. A focus review. Electrochemical Materials and Technologies. 2022. V. 1. № 1. No. 20221004.
10.15726/elmattech.2022.1.004
Review

.