Публикации

  • 2023
  1. N. A. Danilov, I. A. Starostina, G. N. Starostin, A. V. Kasyanova, D. A. Medvedev, Z. Shao. Fundamental understanding and applications of protonic Y‐ and Yb‐coped Ba(Ce,Zr)O3 Perovskites: State‐of‐the‐art and Perspectives. Advanced Energy Materials. 2023. 13(47). 2302175. https://doi.org/10.1002/aenm.202302175
  2. N. Tarasova, A. Bedarkova, I. Animitsa. Novel Pr-doped BaLaInO4 ceramic Material with layered Structure for Proton-conducting Electrochemical Devices. Applied Sciences. 2023. 13(3). 1328. https://doi.org/10.3390/app13031328
  3. N. Tarasova, A. Bedarkova, I. Animitsa, E. Abakumova, A. Trofimov, E. Verinkina. Novel Proton-conducting Layered perovskites Based on BaLa2In2O7 produced by cationic Co-Doping. Applied Sciences. 2023. 13(6). 3449. https://doi.org/10.3390/app13063449
  4. R. Andreev, I. Animitsa. Transport properties of intergrowth Structures Ba5In2Al2ZrO13 and Ba7In6Al2O19. Applied Sciences. 2023. 13(6). 3978. https://doi.org/10.3390/app13063978
  5. I. A. Zvonareva, G. N. Starostin, M. T. Akopian, A. A. Murashkina, X. Z. Fu, D. A. Medvedev. Thermal and chemical expansion behavior of hydrated barium stannate materials. Ceramics International. 2023. 49(13). 21923–21931. https://doi.org/10.1016/j.ceramint.2023.04.016
  6. A. Bedarkova, N. Tarasova, I. Animitsa, E. Abakumova, I. Fedorova, P. Cheremisina, E. Verinkina. Novel co-doped protonic conductors BaLa1.9Sr0.1In1.95M0.05O6.925 with layered perovskite structure. Chimica Techno Acta. 2023. 10(2). 202310206. https://doi.org/10.15826/chimtech.2023.10.2.06
  7. A. V. Kasyanova, J. G. Lyagaeva, G. K. Vdovin, A. A. Murashkina, D. A. Medvedev. Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements. Electrochimica Acta. 2023. 439. 141702. https://doi.org/10.1016/j.electacta.2022.141702
  8. A. S. Kalyakin, A. N. Volkov. Sensor for operational control of oxygen and combustible gases concentration in waste gases of thermal units. Electrochemical Materials and Technologies. 2023. 2(3). 20232019. https://doi.org/10.15826/elmattech.2023.2.019
  9. N. A. Tarasova. Heterovalent and isovalent doping of bilayer proton-conducting perovskite SrLa2Sc2O7. Electrochemical Materials and Technologies. 2023. 2(2). 20232015. https://doi.org/10.15826/elmattech.2023.2.015
  10. Q. Ain, M. Irshad, M. S. Butt, A. N. Tabish, M. B. Hanif, M. A. Khalid, R. Ghaffar, M. Rafique, S. D. E. Shawar Kazmi, K. Siraj, A. A. A. Hafez, H. S. M. Abd-Rabboh, Z. Zmrhalova, E. A. Filonova, D. A. Medvedev, M. Motola. Towards sustainable electrochemistry: green synthesis and sintering aid modulations in the development of BaZr0.87Y0.1M0.03O3−δ (M = Mn, Co, and Fe) IT-SOFC electrolytes. Frontiers in Chemistry. 2023. 11. 1322475. https://doi.org/10.3389/fchem.2023.1322475
  11. K. Belova, A. Egorova, S. Pachina, I. Animitsa, D. Medvedev. Oxygen-ion and proton Transport of origin and Ca-doped La2ZnNdO5.5 Materials. Inorganics. 2023. 11(5). 196. https://doi.org/10.3390/inorganics11050196
  12. R. D. Andreev, I. E. Animitsa. Protonic transport in the novel complex oxide Ba5Y0.5In1.5Al2ZrO13 with intergrowth structure. Ionics. 2023. 29(11). 4647–4658. https://doi.org/10.1007/s11581-023-05187-5
  13. A. P. Tarutin, N. A. Danilov, A. A. Kalinin, A. A. Murashkina, D. A. Medvedev. Ba-doped Pr2NiO4+δ electrodes for proton-conducting electrochemical cells. part 1: Structure, mechanical, and chemical properties. International Journal of Hydrogen Energy. 2023. 48(59). 22531–22544. https://doi.org/10.1016/j.ijhydene.2022.11.175
  14. A. P. Tarutin, S. A. Baratov, L. R. Tarutina, G. K. Vdovin, D. A. Medvedev. Ba-doped Pr2NiO4+δ electrodes for proton-conducting electrochemical cells. part 2: transport and electrochemical properties. International Journal of Hydrogen Energy. 2023. 48(59). 22634–22648. https://doi.org/10.1016/j.ijhydene.2023.02.075
  15. A. V. Shlyakhtina, E. D. Baldin, G. A. Vorobieva, I. V. Kolbanev, D. N. Stolbov, A. V. Kasyanova, N. V. Lyskov. Proton /oxygen ion conductivity ratio of nd containing La10W2O21/γ-La6W2O15 tungstates. International Journal of Hydrogen Energy. 2023. 48(59). 22671–22684. https://doi.org/10.1016/j.ijhydene.2023.03.259
  16. M. B. Hanif, S. Rauf, M. Mosiałek, K. Khan, V. Kavaliukė, A. Kežionis, T. Šalkus, J. Gurgul, D. Medvedev, M. Zimowska, D. Madej, M. Motola. Mo-doped BaCe0.9Y0.1O3-δ proton-conducting electrolyte at intermediate temperature SOFCs. part I: microstructure and electrochemical properties. International Journal of Hydrogen Energy. 2023. 48(96). 37532–37549. https://doi.org/10.1016/j.ijhydene.2023.01.144
  17. N. Tarasova, A. Bedarkova, I. Animitsa, K. Davletbaev, I. Fedorova. Nonmetal doping strategy to enhance the protonic conductivity in CaZrO3. International Journal of Hydrogen Energy. 2023. 48(59). 22336–22341. https://doi.org/10.1016/j.ijhydene.2022.11.264
  18. N. Tarasova, A. Bedarkova, I. Animitsa, E. Abakumova. Cation and oxyanion doping of layered perovskite BaNd2In2O7: Oxygen-ion and proton transport. International Journal of Hydrogen Energy. 2023. 48(59). 22522–22530. https://doi.org/10.1016/j.ijhydene.2022.11.172
  19. A. V. Egorova, K. G. Belova, I. E. Animitsa. Ionic (O2−, H+) transport in novel Zn-doped perovskite LaInO3. International Journal of Hydrogen Energy. 2023. 48(59). 22685–22697. https://doi.org/10.1016/j.ijhydene.2023.03.263
  20. M. Mashkovtsev, N. Tarasova, E. Baksheev, V. Rychkov, N. Zhuravlev, P. Solodovnikova, M. Galiaskarova. Spectroscopic study of Five-coordinated Thermal treated Alumina Formation: FTIR and NMR Applying. International Journal of Molecular Sciences. 2023. 24(6). 5151. https://doi.org/10.3390/ijms24065151
  21. I. A. Zvonareva, D. A. Medvedev. Proton-conducting barium stannate for high-temperature purposes: A brief review. Journal of the European Ceramic Society. 2023. 43(2). 198–207. https://doi.org/10.1016/j.jeurceramsoc.2022.10.049
  22. M. A. Gordeeva, A. P. Tarutin, G. N. Starostin, G. K. Vdovin, D. A. Medvedev. Functional properties of La1–xBaxFeO3–δ as symmetrical electrodes for protonic ceramic electrochemical cells. Journal of the European Ceramic Society. 2023. 43(15). 6946–6955. https://doi.org/10.1016/j.jeurceramsoc.2023.07.018
  23. Y. A. Morkhova, M. S. Koroleva, A. V. Egorova, A. A. Pimenov, A. G. Krasnov, B. A. Makeev, V. A. Blatov, A. A. Kabanov. Magnocolumbites Mg1–xMxNb2O6−δ (x = 0, 0.1, and 0.2; M = Li and Cu) as new Oxygen ion Conductors: theoretical Assessment and Experiment. The Journal of Physical Chemistry C. 2023. 127(1). 52–58. https://doi.org/10.1021/acs.jpcc.2c06631
  24. I. A. Zvonareva, G. N. Starostin, M. T. Akopian, G. K. Vdovin, X. Z. Fu, D. A. Medvedev. Ionic and electronic transport of dense Y-doped barium stannate ceramics for high-temperature applications. Journal of Power Sources. 2023. 565. 232883. https://doi.org/10.1016/j.jpowsour.2023.232883
  25. N. Tarasova. Layered perovskites BaLnnInnO3n+1 (n = 1, 2) for electrochemical Applications: A mini Review. Membranes. 2022. 13(1). 34. https://doi.org/10.3390/membranes13010034
  26. I. Anokhina, I. Animitsa, M. Erzhenkov, V. Voronin, N. Kadyrova, Y. Zaikov. Electrical properties and chemical Resistance of the composites (1-x)Gd2Zr2O7·xMgO in Li-containing Chloride Melts. Processes. 2023. 11(4). 1217. https://doi.org/10.3390/pr11041217
  27. M. V. Erpalov, A. P. Tarutin, N. A. Danilov, D. A. Osinkin, D. A. Medvedev. Chemistry and electrochemistry of CeO2-based interlayers: prolonging the lifetime of solid oxide fuel and electrolysis cells. Russian Chemical Reviews. 2023. 92(10). RCR5097. https://doi.org/10.59761/RCR5097
  28. A. M. Mehdi, A. Hussain, M. Z. Khan, M. B. Hanif, R. H. Song, W. W. Kazmi, M. M. Ali, S. Rauf, Y. Zhang, M. M. Baig, D. A. Medvedev, M. Motola. Progress and prospects in direct ammonia solid oxide fuel cells. Russian Chemical Reviews. 2023. 92(11). RCR5098. https://doi.org/10.59761/RCR5098
  29. R. D. Andreev, I. A. Anokhina, D. V. Korona, A. R. Gilev, I. E. Animitsa. Transport properties of In3+– and Y3+-doped Hexagonal perovskite Ba5In2Al2ZrO13. Russian Journal of Electrochemistry. 2023. 59(3). 190–203. https://doi.org/10.1134/S1023193523030035
  30. A. O. Bedarkova, P. V. Cheremisina, E. V. Abakumova, I. S. Fedorova, K. G. Davletbaev, N. A. Tarasova, I. E. Animitsa. Oxygen-ionic Conductivity in Isovalent-doped Layered BaLaInO4-based Perovskites. Russian Journal of Electrochemistry. 2023. 59(4). 269–275. https://doi.org/10.1134/S1023193523040031
  31. A. V. Egorova, K. G. Belova, N. V. Lakiza, I. E. Animitsa. Ionic (O2– and H+) transport in Oxygen-deficient Perovskites La2Me+3ZnO5.5. Russian Journal of Electrochemistry. 2023. 59(4). 276–283. https://doi.org/10.1134/S1023193523040055
  32. A. V. Shlyakhtina, N. V. Lyskov, I. V. Kolbanev, E. D. Baldin, A. V. Kasyanova, D. A. Medvedev. Proton and Oxygen-ion Conductivity of the pure and Lanthanide-doped Hafnates with pyrochlore Structure. Russian Journal of Electrochemistry. 2023. 59(6). 449–460. https://doi.org/10.1134/S1023193523060058
  33. A. P. Tarutin, E. A. Filonova, S. Ricote, D. A. Medvedev, Z. Shao. Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide. Sustainable Energy Technologies and Assessments. 2023. 57. 103185. https://doi.org/10.1016/j.seta.2023.103185
  34. Y. A. Morkhova, E. I. Orlova, A. A. Kabanov, T. A. Sorokin, A. V. Egorova, A. R. Gilev, E. P. Kharitonova, N. V. Lyskov, V. I. Voronkova, N. A. Kabanova. Comprehensive study of conductivity in the series of monoclinic oxymolybdates: Ln2MoO6 (ln = Sm, Gd, Dy). Solid State Ionics. 2023. 400. 116337. https://doi.org/10.1016/j.ssi.2023.116337
  35. A. S. Kalyakin, A. N. Volkov. Electrochemical detection of simple alkanes by utilizing a solid-state zirconia-based gas sensor. Chimica Techno Acta. 2023. 10(1). 202310109. https://doi.org/10.15826/chimtech.2023.10.1.09
  36. M. Ulitko, Y. Antonets, I. Antropova, A. Mullabaev, E. Volokitina, A. Kasyanova, E. Loginova, N. Tarasova. Ceramic materials based on lanthanum zirconate for the bone augmentation purposes: cytocompatibility in a cell culture model. Chimica Techno Acta. 2023. 10(4). 202310402. https://doi.org/10.15826/chimtech.2023.10.4.02
  37. L. Tarutina, I. Starostina, G. Vdovin, S. Pershina, E. Vovkotrub, A. Murashkina. Chemical stability aspects of BaCe0.7–xFexZr0.2Y0.1O3–δ mixed ionic-electronic conductors as promising electrodes for protonic ceramic fuel cells. Chimica Techno Acta. 2023. 10(4). 202310414. https://doi.org/10.15826/chimtech.2023.10.4.14

 

  • 2022
  1. Zvonareva, I.A.; Starostin, G.N.; Akopian, M.T.; Tarasova, N.A.; Medvedev, D.A. Ba2–xLaxSnO4+δ layered barium stannate materials: Synthesis, electronic transport, and chemical stability. Journal of Alloys and Compounds. 2022. V. 928. 167170. https://doi.org/1016/j.jallcom.2022.167170
  2. Zvonareva, I.A.; Mineev, A.M.; Tarasova, N.A.; Fu, X.-Z.; Medvedev, D.A. High-temperature transport properties of BaSn1−xScxO3−δ ceramic materials as promising electrolytes for protonic ceramic fuel cells. Journal of Advanced Ceramics . 2022. V. 11, № 7. P. 1131-1143. https://doi.org/10.1007/s40145-022-0599-x
  3. Filonova, E.; Medvedev, D. Recent progress in the design, characterisation and application of LaAlO3-and LaGaO3-based solid oxide fuel cell electrolytes. Nanomaterials. 2022. V. 12, № 12. 1991. https://doi.org/10.3390/nano12121991
  4. Tarasova, N.; Galisheva, A.; Animitsa, I.; Anokhina, I.; Gilev, A.; Cheremisina, P. Novel mid-temperature Y3+ → In3+ doped proton conductors based on the layered perovskite BaLaInO4. Ceramics International. 2022. V.48, № P. 15677-15685. https://doi.org/10.1016/j.ceramint.2022.02.102
  5. Tarasova, N.; Galisheva, A.; Animitsa, I.; Korona, D.; Davletbaev, K. Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2−, H+) conductivity. International Journal of Hydrogen Energy. 2022. V. 47, № P. 18972-18982. https://doi.org/10.1016/j.ijhydene.2022.04.112
  6. Kalyakin, A.S.; Medvedev, D.A.; Volkov, A.N. Electrochemical zirconia-based sensor for measuring hydrogen diffusion in inert gases. Journal of the Electrochemical Society. 2022. V. 169, № 057530. https://doi.org/10.1149/1945-7111/ac725d
  7. Tarasova, N.; Galisheva, A.; Animitsa, I.; Belova, K.; Egorova, A.; Abakumova, E.; Medvedev, D. Layered perovskites BaM2In2O7 (M = La, Nd): From the structure to the ionic (O2–, H+) conductivity. Materials. 2022. V. 15, № 3488. https://doi.org/10.3390/ma15103488
  8. Shlyakhtina, A.V.; Lyskov, N.V.; Nikiforova, G.E.; Kasyanova, A.V.; Vorobieva, G.A.; Kolbanev, I.V.; Stolbov, D.N.; Medvedev, D.A. Proton conductivity of La2(Hf2−xLax)O7−x/2 “stuffed” pyrochlores. Applied Sciences. 2022. V. 12№ 4342. https://doi.org/10.3390/app12094342
  9. Fan, Y.; Xi, X.; Li, J.; Wang, Q.; Xiang, K.; Medvedev, D.; Luo, J.-L.; Fu, X.-Z. Barium-doped Sr2Fe5Mo0.5O6-δ perovskite anode materials for protonic ceramic fuel cells for ethane conversion. Journal of the American Ceramic Society. 2022. V. 105, № 5. P. 3613-3624. https://doi.org/10.1111/jace.18329
  10. Tarasova, N.; Galisheva, A.; Animitsa, I.; Korona, D.; Kreimesh, H.; Fedorova, I. Protonic transport in layered perovskites BaLanInnO3n+1 (n = 1, 2) with Ruddlesden-Popper structure. Applied Sciences. 2022. V. 12, №8. 4082. https://doi.org/10.3390/app12084082
  11. Saad, A.; Gao, Y.; Ramiere, A.; Chu, T.; Yasin, G.; Wu, Y.; Ibraheem, S.; Wang, M.; Guo, H.; Tsiakaras, P.; Cai, X. Understanding the surface reconstruction on ternary WxCoBx for water oxidation and Zinc–Air battery applications. Small. 2022. 18, № 17. 2201067. https://doi.org/10.1002/smll.202201067
  12. Jing, S.; Gai, Z.; Li, M.; Tang, S.; Ji, S.; Liang, H.; Chen, F.; Yin, S.; Tsiakaras, P. Enhanced electrochemical performance of a Li-O2 battery using Co and N co-doped biochar cathode prepared in molten salt medium. Electrochimica Acta. 2022.V. 410. 140002. https://doi.org/10.1016/j.electacta.2022.140002
  13. Balkourani, G.; Brouzgou, A.; Vecchio, C.L.; Aricò, A.S.; Baglio, V.; Tsiakaras, P. Selective electro-oxidation of dopamine on Co or Fe supported onto N-doped ketjenblack. Electrochimica Acta. 2022. V. 409. 139943. https://doi.org/10.1016/j.electacta.2022.139943
  14. Tarasova, N.A.; Galisheva, A.O.; Animitsa, I.E.; Korona, D.V.; Lakiza, N.V. Effect of simultaneous iso- and heterovalent doping on the hydration and state of oxygen–hydrogen groups in block-layer complex oxides Ba1+xLa1−xIn5Y0.5O4−0.5x. Russian Journal of Physical Chemistry A. 2022. V. 96, № 3. P. 588-592. https://doi.org/10.1134/S0036024422030232
  15. Tarutin, A.P.; Kasyanova, A.V.; Vdovin, G.K.; Lyagaeva, J.G.; Medvedev, D.A. Nickel-containing perovskites, PrNi4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as potential electrodes for protonic ceramic electrochemical cells. Materials. 2022. V. 15, № 6. 2166. https://doi.org/10.3390/ma15062166
  16. Kalyakin, A.S.; Volkov, A.N.; Meshcherskikh, A.N.; Dunyushkina, L.A. Dual chamber YSZ-based sensor for simultaneous measurement of methane and water vapor concentrations in CH4+ H2O + N2 gas mixtures. Journal of Solid State Electrochemistry. 2022. V. 26, №3. P. 739-747. https://doi.org/10.1007/s10008-022-05116-y
  17. Zhang, B.; Shan, J.; Wang, W.; Tsiakaras, P.; Li, Y. Oxygen vacancy and core–shell heterojunction engineering of Anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. 2022. Small. V. 18, № 12. 2106012. https://doi.org/10.1002/smll.202106012
  18. Liu, D.; Song, Z.; Cheng, S.; Wang, Y.; Saad, A.; Deng, S.; Shen, J.; Huang, X.; Cai, X.; Tsiakaras, P. Mesoporous IrNiTa metal glass ribbon as a superior self-standing bifunctional catalyst for water electrolysis. Chemical Engineering Journal. 2022. V. 431. 134210. https://doi.org/10.1016/j.cej.2021.134210
  19. Najam, T.; Shah, S.S.A.; Ibraheem, S.; Cai, X.; Hussain, E.; Suleman, S.; Javed, M.S.; Tsiakaras, P. Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications. Energy Storage Materials. 2022. V. 45. P. 504-540. https://doi.org/10.1016/j.ensm.2021.11.050
  20. Najam, T.; Shah, S.S.A.; Peng, L.; Javed, M.S.; Imran, M.; Zhao, M.-Q.; Tsiakaras, P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews. 2022. V. 454. 214339. https://doi.org/10.1016/j.ccr.2021.214339
  21. Zvonareva, I.A.; Kasyanova, A.V.; Tarutin, A.P.; Vdovin, G.K.; Lyagaeva, J.G.; Medvedev, D.A. Enhanced transport properties of Sn-substituted proton-conducting BaZr0.8Sc0.2O3–δ ceramic materials. Journal of the American Ceramic Society. 2022. V. 105, № 3. P. 2105-2115. https://doi.org/10.1111/jace.18224
  22. Saad, A.; Gao, Y.; Owusu, K.A.; Liu, W.; Wu, Y.; Ramiere, A.; Guo, H.; Tsiakaras, P.; Cai, X. Ternary Mo2NiB2 as a superior bifunctional electrocatalyst for overall water splitting. Small. 2022. V. 18, № 2104303. https://doi.org/10.1002/smll.202104303
  23. Belova, K.; Egorova, A.; Pachina, S.; Animitsa, I. Crystal structure, electrical conductivity and hydration of the novel oxygen-deficient perovskite La2ScZnO5, doped with MgO and CaO. Applied Sciences. 2022. V. 12, № 3. 1181. https://doi.org/10.3390/app12031181
  24. Zvonareva, I.; Fu, X.-Z.; Medvedev, D.; Shao, Z. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy and Environmental Science. 2022. V. 15, № P. 439-465. https://doi.org/10.1039/d1ee03109k
  25. Tarasova, N.; Galisheva, A.; Animitsa, I.; Korona, D.; Abakumova, E.; Medvedev, D. Novel mixed oxygen-electronic conductors based on BaLa2In2O7 with two-layer Ruddlesden-Popper structure. Ceramics International. 2022. In Press https://doi.org/10.1016/j.ceramint.2022.08.139
  26. Starostin, G.N.; Zvonareva, I.A.; Medvedev, D.A.; Zvonarev, S.V. Comparing the luminescence properties of ZnAl2O4 synthesized by citrate-nitrate auto-combustion and solid-state synthesis routes. Ceramics International. 2022. In Press https://doi.org/10.1016/j.ceramint.2022.08.277
  27. Tarasova, N.; Galisheva, A. Phosphorus-doped protonic conductors based on BaLanInnO3n+1 (n = 1, 2): applying oxyanion doping strategy to the layered perovskite structures. Chimica Techno Acta. 2022. V. 9, № 5979. https://doi.org/10.15826/chimtech.2022.9.4.05
  28. Tarasova, N.; Galisheva, A.; Belova, K.; Mushnikova, A.; Volokitina, E. Ceramic materials based on lanthanum zirconate for the bone augmentation purposes: materials science approach. Chimica Techno Acta. 2022. V. 9, № 20229209. https://doi.org/10.15826/chimtech.2022.9.2.09
  29. Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost Effective Synthesis of graphene nanomaterials for non-enzymatic electrochemical sensors for glucose: A comprehensive review. Sensors. 2022. V. 22, № 355. https://doi.org/10.3390/s22010355
  30. Klyndyuk, A.I.; Chizhova, E.A.; Kharytonau, D.S.; Medvedev, D.A. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials. 2022. V. 15, № 141. https://doi.org/10.3390/ma15010141
  31. Tarasova, N.; Animitsa, I. Materials AIILnInO4 with Ruddlesden-Popper structure for electrochemical applications: Relationship between ion (oxygen-ion, proton) conductivity, water uptake, and structural changes. Materials. 2022. V.15, № 114. https://doi.org/10.3390/ma15010114
  32. Gorbova, E.; Tzorbatzoglou, F.; Molochas, C.; Chloros, D.; Demin, A.; Tsiakaras, P. Fundamentals and principles of solid-state electrochemical sensors for high temperature gas detection. Catalysts. 2022. V.12, № 1. https://doi.org/10.3390/catal12010001
  33. Orlova, E. I.; Morkhova, Y. A.; Egorova, A. V.; Kharitonova, E. P.; Lyskov, N. V.; Voronkova, V. I.; Kabanov, A. A.; Veligzhanin, A. A.; Kabanova, N. A. Mechanism of Conductivity in the Rare Earth Layered Ln2MoO6 (Ln = La, Pr, and Nd) Oxymolybdates: Theoretical and Experimental Investigations. Journal of Physical Chemistry C. 2022. V 126, №23. 9623-9633. https://doi.org/10.1021/acs.jpcc.2c01837