ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

на правах рукописи УДК 669.447:544.6.018.23

Катаев Александр Александрович

Получение сплавов Al-B восстановлением KBF₄ и B₂O₃ в легкоплавких криолитовых расплавах

Специальность 05.17.03 – Технология электрохимических процессов и защита от коррозии

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: доктор химических наук, профессор Зайков Юрий Павлович

Екатеринбург 2019

оглавление

ВВЕДЕНИЕ	5
ГЛАВА 1. МЕТОДЫ ИССЛЕДОВАНИЙ ФИЗИКО-ХИМИЧЕСКИХ	
СВОЙСТВ, СОСТАВА И СТРУКТУРЫ БОРСОДЕРЖАЩИХ	
КРИОЛИТОВЫХ РАСПЛАВОВ	. 11
1.1 Методы определения температуры ликвидуса	. 11
1.1.1 Термический анализ по кривым охлаждения	. 11
1.1.2 Термогравиметрия и дифференциальная сканирующая	14
1.2 Мотони опродолжи ростроримости оконнов боро и ополниция	. 14
1.2 Методы определения растворимости оксидов обра и алюминия	. 14
1.2.1 Метод изотермического насыщения	. 15
1.2.2 Определение растворимости оксидов но фазовым диаграммам 1.3 Метод спектроскопии электрохимического импеданса для	. 15
определения электропроводности расплавов	. 16
1.4 Гравиметрический метод определения плотности расплавов	. 21
1.5 Методы изучения состава и структуры сплавов и расплавов	. 23
1.5.1 Рентгенофазовый анализ	. 23
1.5.2 Элементный химический анализ	. 23
1.5.3 Раман спектроскопия	. 23
1.6 Методика приготовления криолитовых расплавов для физико- химических исследований	. 24
1.7 Составы криолитовых расплавов для физико-химических исследований	. 25
ГЛАВА 2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ФТОРИДНЫХ	
РАСПЛАВОВ НА ОСНОВЕ КАЛИЕВОГО КРИОЛИТА,	
СОДЕРЖАЩИХ СОЕДИНЕНИЯ БОРА	. 26
2.1 Физико-химические свойства расплавов фторидных солей,	
содержащих КВF ₄ и В ₂ О ₃ (литературный обзор)	. 26
2.1.1 Влияние КВF ₄ на физико-химические свойства фторидных расплавов	. 26
2.1.2 Влияние В ₂ О ₃ на физико-химические свойства фторидных расплавов	. 27
2.2 Исследование термической устойчивости систем [KF-AlF ₃]-KBF ₄ и	
$[KF-NaF-AlF_3]-KBF_4(B_2O_3)$. 30
2.2.1 Рентгенофазовый анализ	. 30

2.2.2 Термогравиметрия и дифференциальная сканирующая калориметрия в комплексе с масспектрометрией	31
2.2.3 Химический анализ содержания бора в расплаве KF–AlF ₃ –KBF ₄ в процессе исследований методом термического анализа	36
2.3Исследованиетемпературыликвидусаборсодержащихкриолитовыхрасплавов[KF-AlF3]-KBF4(B2O3)и[KF-NaF-AlF3]-KBF4(B2O3)	37
2.3.1 Влияние КВF ₄ на температуру ликвидуса расплавов KF-AlF ₃ и KF-NaF-AlF ₃	37
2.3.2 Влияние B ₂ O ₃ на температуру ликвидуса расплавов KF-AlF ₃ и KF-NaF-AlF ₃	39
2.4 Исследование растворимости Al ₂ O ₃ в борсодержащих криолитовых расплавах [KF-AlF ₃]-KBF ₄ (B ₂ O ₃) и [KF-NaF-AlF ₃]-KBF ₄ (B ₂ O ₃)	41
2.4.1 Влияние КВF ₄ на растворимость Al ₂ O ₃ в борсодержащих криолитовых расплавах KF-AlF ₃ и KF-NaF-AlF ₃	41
2.4.2 Влияние В ₂ О ₃ на растворимость Al ₂ O ₃ в борсодержащих криолитовых расплавах KF-AlF ₃ и KF-NaF-AlF ₃	43
2.5 Исследование электропроводности расплавов [KF-AlF ₃]-KBF ₄ (B ₂ O ₃) и [KF-NaF-AlF ₃]-KBF ₄ (B ₂ O ₃)	46
2.5.1 Влияние КВF ₄ на электропроводность расплавов KF-AlF ₃ и KF-NaF-AlF ₃	46
2.5.2 Влияние В ₂ О ₃ на электропроводность расплавов KF-AlF ₃	48
2.6 Исследование плотности борсодержащих криолитовых расплавов [KF-AlF ₃]-KBF ₄	49
Выводы по главе 2	51
ГЛАВА 3. СТРУКТУРА БОРСОДЕРЖАЩИХ КРИОЛИТОВЫХ	
РАСПЛАВОВ	55
3.1 Современные представления о структуре расплавов, содержащих В ₂ О ₃	55
3.2 Раман-спектроскопические исследования борсодержащих криолитов [KF-AlF ₃]-KBF ₄ (B ₂ O ₃) и [KF-NaF-AlF ₃]-KBF ₄ (B ₂ O ₃)	57
3.3 Механизм взаимодействия В ₂ О ₃ с криолитовыми расплавами	61
3.3.1 Взаимодействие с калиевым криолитом	61
3.3.2 Взаимодействие с калий-натриевым криолитом	64
Выводы по главе 3	65
ГЛАВА 4. ПОЛУЧЕНИЕ СПЛАВОВ Al-B С ИСПОЛЬЗОВАНИЕМ	
ЛЕГКОПЛАВКИХ КРИОЛИТОВЫХ РАСПЛАВОВ	67

4.1 Состав сплавов Al-B и методы их получения (литературный обзор) 67
4.1.1 Фазовая диаграмма Al-B 67
4.1.2 Методы получения лигатурных сплавов Al-В 70
4.2 Исследование процесса получения сплавов Al-B методом алюмотермического восстановления KBF ₄ и B ₂ O ₃ в среде расплавов KF-AlF ₃ и KF-NaF-AlF ₃
4.2.1. Выбор состава флюсов
4.2.2. Методика проведения алюмотермического восстановления
4.2.3 Результаты алюмотермического получения сплава Al-B 81
4.2.4 Структура сплавов Al-B, полученных алюмотермическим методом 84
Выводы по разделу 4.291
4.3 Электролитическое получение сплава Al-B в расплаве KF-AlF ₃ -B ₂ O ₃ 92
4.3.1 Методика проведения электролиза
4.3.2 Результаты электролитического получения сплава Al-B
4.3.3 Структура сплавов Al-B, полученных электролитическим восстановлением B ₂ O ₃
Выводы по разделу 4.3
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ 103

введение

Актуальность темы исследования

Бор используется в производстве электротехнического алюминия в качестве рафинирующего компонента, а также как легирующая добавка в алюминиевые сплавы для улучшения их литейных и механических свойств и как модифицирующая добавка, способствующая измельчению зерна сплава. Бор вводится в алюминий в виде лигатуры Al-B. Производство лигатур Al-B осуществляет несколько предприятий в мире (ALEASTUR, Испания; AMG Aluminum, США-Канада и др.), и сведения о технологии ограничены. В России лигатуру Al-B в промышленных масштабах не производят, а небольшие частные компании не могут обеспечить потребительский спрос.

Основным способом задания бора в алюминий является алюмотермическое восстановление борсодержащих соединений (KBF₄), как прямым сплавлением компонентов, так и с использованием солевых флюсов. Прямое введение соединений расплавленный алюминий борсодержащих В при высоких температурах имеет ряд недостатков, включая низкий коэффициент извлечения бора, агломерацию боридных частиц в алюминии, образование сложных оксидов, загрязняющих реакционную смесь и т.д. На сегодняшний день алюмотермическая технология с применением традиционных хлоридных и хлоридно-фторидных солевых флюсов представляется наиболее энергоэффективной, поскольку не требует высоких энергозатрат на проведение электрохимических реакций восстановления бора из его соединений. Однако недостатком метода является сложность управления алюмотермической реакцией, приводящей при рабочих температурах процесса (900-950 °C) к высоким потерям бора вследствие побочной реакции термического разложения KBF₄, а также необходимости переработки больших объемов отработанного флюса и утилизации вредных продуктов реакции [1].

В качестве источника бора при получении сплавов Al-В представляет интерес более дешевый и более обогащенный бором – B₂O₃. Однако попытки

5

получить лигатурный сплав Al-B непосредственно в промышленном электролизере при температуре около 1000 °C были безуспешны вследствие нестабильности процесса и большого зашламления ванны [2].

Таким образом, для масштабного получения лигатурных сплавов Al-B с воспроизводимыми характеристиками (содержание и распределение бора) необходим тщательный подбор оптимальных технологических режимов процесса. Состав солевого расплава, его физико-химические характеристики могут существенно изменить условия получения сплава Al-B как алюмотермическим, так и электролитическим восстановлением борсодержащих соединений KBF₄ и B₂O₃, что повысит степень извлечения бора и эффективность процесса.

В качестве альтернативных солевых флюсов могут быть использованы фторидные расплавленные соли на основе калиевого криолита, которые имеют низкую температуру плавления, что положительно влияет на их покровные (защитные) свойства, являются хорошими растворителями оксида алюминия, что усиливает рафинирующую функцию, а значительные различия плотности металлического сплава и солевой части обеспечивают их хорошее разделение. Следует отметить, что в литературных источниках практически нет информации о влиянии добавок KBF₄ или B₂O₃ на физико-химические свойства легкоплавких криолитовых расплавов на основе калиевого криолита.

Степень разработанности темы исследования

За последнее десятилетие фундаментальные и прикладные исследования в области низкотемпературного способа получения алюминия, проводимые в ИТВЭ УрО РАН, доказали эффективность электролитов на основе легкоплавкого калиевого криолита (KF-AlF₃-Al₂O₃) с криолитовым отношением (KO) в интервале 1,3-1,5 [3-11]. Выявлены закономерности изменений физикохимических свойств калиевых и смешанных калий-натрий-литиевых криолитов и предложены составы электролитов для получения алюминия при температурах 700-800 °C. Расплавленные фторидные соли на основе калиевого криолита могут быть использованы для получения алюминиевых сплавов как в качестве солевых

6

флюсов при металлотермическом восстановлении, так и в качестве электролитов при электролитическом восстановлении. Такие расплавы имеют температуру плавления, сравнимую по значению с температурой плавления традиционных флюсов, а также являются хорошими растворителями оксида алюминия. Однако введение в электролит соединений бора может привести к значительному изменению его физико-химических свойств, что, несомненно, отразится на технологических параметрах получения сплавов.

Цель работы

Разработка научных основ электролитического и алюмотермического способов получения сплавов Al-B с использованием солевых расплавов на основе легкоплавкого калиевого криолита с борсодержащими добавками KBF₄ и B₂O₃.

Задачи исследования:

- 1. Исследовать термическую устойчивость легкоплавких криолитовых систем КF-AlF₃ и KF-NaF-AlF₃, содержащих добавки KBF₄ и B₂O₃.
- Измерить температуру ликвидуса борсодержащих криолитовых расплавов [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃) с криолитовым отношением (KO) 1,3-1,5.
- Исследовать растворимость Al₂O₃ в борсодержащих криолитовых расплавах [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃) с КО 1,3-1,5 в интервале температур 600-850 °C.
- Определить электропроводность криолитовых расплавов [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃) с КО 1,3-1,5 в интервале температур 800-850 °C.
- 5. Определить плотность криолитовых расплавов KF-AlF₃-KBF₄ с KO 1,3 в интервале температур 700-800 °C.
- 6. Выяснить механизм взаимодействия KBF₄ и B₂O₃ с расплавами на основе легкоплавкого калиевого криолита.
- 7. Провести лабораторные испытания и определить условия получения

сплавов Al-B алюмотермическим восстановлением борсодержащих добавок (KBF₄ и B₂O₃) с использованием флюсов на основе легкоплавкого калиевого криолита.

 Провести лабораторные испытания и выяснить оптимальные параметры получения сплавов Al-B электролизом расплавов на основе легкоплавкого калиевого криолита, содержащих B₂O₃.

Научная новизна и теоретическая значимость работы

- Установлены закономерности изменения физико-химических свойств (температура ликвидуса, термическая устойчивость, электропроводность, плотность, растворимость Al₂O₃) расплавов на основе легкоплавкого калиевого криолита, содержащих KBF₄ и B₂O₃, в зависимости от состава и температуры.
- Предложен двух-стадийный механизм взаимодействия B₂O₃ с легкоплавкими расплавами калиевого криолита с образованием на первой стадии KBF₄ и Al₂O₃ и на последующей фтороксиборатов калия.

Практическая значимость работы

- 1. Выявлены составы калиевого криолита, обладающие хорошей растворимостью как B₂O₃, так и Al₂O₃ в интервале температур 600-750 °C, которые рекомендованы для электролитического получения сплавов Al-B.
- Определены термически стойкие (при температурах до 800 °C) составы солевых флюсов на основе легкоплавкого калиевого криолита, содержащие до 15 мол. % KBF₄, обладающие улучшенными, по сравнению с традиционными, покровной (защитной) и рафинирующей функциями и пониженной плотностью.
- 3. Установлены режимы и условия получения лигатурных сплавов Al-B с содержанием бора 1-2 мас.% алюмотермическим восстановлением KBF₄ с использованием расплавленного флюса на основе легкоплавкого калиевого криолита при температуре 700-800 °C.

4. Показана принципиальная возможность получения сплавов A1-В с высоким содержанием бора (до 7,5 мас.%) электролизом расплавов KF-A1F₃-B₂O₃ при температуре 700 °C, при этом процесс сопровождается непрерывной регенерацией электролита. Определены оптимальные технологические параметры и условия.

Методология и методы исследования

Для исследования физико-химических свойств криолитовых расплавов современные методы И оборудование: спектроскопию использовали электрохимического импеданса (импедансметр Zahner IM6E), гравиметрический **УТГМ-1** c определения плотности (установка электронными метод аналитическими весами Mettler AT20), термогравиметрию и дифференциальную сканирующую калориметрию в комплексе с масспектрометрией (станция термического анализа STA 449 F1 Jupiter (NETZSCH) и масспектрометр QMS 403 CAëolos (NETZSCH)).

Для измерения температур кристаллизации методом термического анализа по кривым охлаждения использовали модифицированную установку, позволяющую проводить измерения одновременно двумя термопарами.

Структуру исследуемых систем анализировали методами Раман спектроскопии (Рамановский микроскоп-спектрометр U 1000), сканирующей электронной микроскопии и энергодисперсионного микрорентгенофазового анализа (SEM-EDX) (сканирующий электронный микроскоп JMS-5900LV с микроанализатором INCA Energy 200 и энергодисперсионный микроанализатор INCA Wave 250 (JEOL, UK)).

Концентрацию компонентов электролита и сплава определяли методом индуктивно-связанной плазмы (ICP) (оптический эмиссионный спектрометр с индуктивно-связанной плазмой iCAP 6300 Duo) и анализатором кислорода (ONH836 LECO).

Положения, выносимые на защиту:

- Результаты экспериментального определения температуры ликвидуса и солидуса, электропроводности, плотности, растворимости Al₂O₃ в расплавах [KF-AlF₃]-KBF₄, [KF-NaF-AlF₃]-KBF₄, [KF-AlF₃]-B₂O₃ и [KF-NaF-AlF₃]-B₂O₃ в зависимости от состава и температуры.
- 2. Результаты изучения взаимодействия B₂O₃ с легкоплавкими криолитовыми расплавами KF-AlF₃ и KF-NaF-AlF₃.
- 3. Способ электролитического получения сплавов Al-B с высоким содержанием бора в расплавах [KF-AlF₃]-B₂O₃ при 700 °C.
- 4. Способ алюмотермического получения сплавов Al-B в легкоплавких криолитовых расплавах [KF-AlF₃]-KBF₄ и [KF-NaF-AlF₃]-KBF₄ в интервале температур 700-850 °C.

Личный вклад автора

Формирование цели исследования, участие в постановке задач и непосредственное проведение исследований, анализ и обобщение полученных результатов, подготовка научных публикаций.

Достоверность результатов обеспечивается использованием сертифицированного оборудования, современных средств проведения исследований, применением достоверных и аттестованных методик выполнения измерений. Подтверждается согласованностью данных эксперимента и научных выводов, воспроизводимостью результатов лабораторных испытаний.

ГЛАВА 1. МЕТОДЫ ИССЛЕДОВАНИЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ, СОСТАВА И СТРУКТУРЫ БОРСОДЕРЖАЩИХ КРИОЛИТОВЫХ РАСПЛАВОВ

Наиболее важными физико-химические свойствами расплавленных солей с точки зрения их использования в технологии получения алюминиевых сплавов являются:

- температура ликвидуса, определяющая как рабочие температуры процесса при электролизе, так и покровные (защитные) свойства солевого флюса при алюминотермии;
- растворимость соединений легирующих компонентов и оксида алюминия, от которой зависит производительность и эффективность процесса получения сплава, а также рафинирующее действие солевого флюса;
- электропроводность, определяющая энергетические затраты;
- плотность расплавленной соли, обеспечивающая хорошее разделение жидкого металлического сплава и солевой части.
- 1.1 Методы определения температуры ликвидуса
- 1.1.1 Термический анализ по кривым охлаждения

Для измерения температуры ликвидуса исследуемых криолитовых расплавов использовали метод термического анализа (ТА), который заключается в регистрации тепловых эффектов, сопровождающих превращения веществ, в процессе медленного охлаждения. Смесь расплавленных солей представляет собой сложный многокомпонентный Каждый расплав. компонент кристаллизуется при определенной температуре. При охлаждении смеси расплавленных солей сначала происходит кристаллизация более тугоплавкого компонента, а затем кристаллизуются компоненты с более низкой температурой плавления (кристаллизации). При значительном выделении энергии кристаллизации наблюдается изгиб (уменьшение скорости остывания) на кривой охлаждения расплава, соответствующий началу выделения тепла. Кривые охлаждения в координатах «температура-время» автоматически записываются.

Схема экспериментальной ячейки для определения температуры ликвидуса показана на Рисунке 1.1. Тигель из стеклоуглерода с исследуемой солью помещали в герметично закрытую кварцевую пробирку. В пробке были сделаны отверстия для двух Pt/Pt-Rh-термопар. Особенностью этой методики является то, что для повышения точности измерения проводили с помощью двух термопар, погруженных в расплав на разную глубину.

Рисунок 1.1 - Схема установки для определения температуры ликвидуса

криолитовых расплавов

Пробирку устанавливали в печь с силитовыми нагревателями, температуру которой контролировали микропроцессорным терморегулятором ВАРТА ТП-403. Измерения проводили в инертной атмосфере (Аг). Перед началом эксперимента ячейку вакуумировали, затем подавали сухой аргон через кварцевую трубку, также вмонтированную в пробку ячейки. Эту же трубку использовали для подгрузки добавок (B₂O₃, KBF₄, Al₂O₃) в исследуемый расплав в потоке инертного газа [4]. Ячейку выдерживали при температуре 820-830 °C в течение 1 ч и начинали охлаждение. Скорость охлаждения составляла в среднем 3 °/мин. Температуру регистрировали с помощью универсального цифрового мультиметра АРРА 109N с частотой 1 измерение в секунду. Прибор позволяет записывать данные в собственную буферную память. Запись продолжается в течение всего эксперимента, по окончании которого можно сохранить полученные результаты на персональный компьютер.

В качестве примера на рисунке 1.2 приведены кривые охлаждения, полученные в расплаве KF-AlF₃-KBF₄(2 мол.%) с KO=1,5.

Рисунок 1.2 - Кривые охлаждения расплава [KF-AlF₃]+KBF₄(2 мол.%) (KO=1,5), зарегистрированные с помощью двух термопар (метод TA)

Из рисунка 1.2 следует, что температуры ликвидуса, зафиксированные с помощью двух термопар, различаются на 3 градуса. Во всех экспериментах разница в величинах температур ликвидуса обеих термопар не превышала 5 градусов. Следует отметить, что погрешность определения температуры методом ТА с использованием такого же оборудования, рассчитанная в соответствии с ГОСТ Р 50.2.038-2004. в работе [4], составляет $\pm 5^{\circ}$.

1.1.2 Термогравиметрия и дифференциальная сканирующая калориметрия в комплексе с масспектрометрией

Для детального анализа поведения исследуемых расплавов при нагревании, использовали комплекс термического анализа, состоящий из станции термического анализа STA 449 F1 Jupiter (NETZSCH) и масспектрометра QMS 403 CAëolos (NETZSCH). Это позволяло синхронно фиксировать изменение массы образца и кривой дифференциальной сканирующей калориметрии (ДСК), а также определять ионный состав газовой фазы.

Образцы помещали в тигли из нитрида бора (d = 5 мм). Измерения проводили в интервале температур от 35 до 780-800 °C ($\approx T_{nn}$ +150 °C) со скоростью нагрева 10 °C/мин. Измерительная ячейка с образцом продувалась аргоном со скоростью 20 мл/мин. Полученные данные обрабатывали с помощью программного обеспечения NETZSCH Proteus.

1.2 Методы определения растворимости оксидов бора и алюминия

Известные методы определения растворимости и скорости растворения оксида алюминия в криолит-глинозёмных расплавах подробно описаны в ряде работ [12-15]. Для исследований растворимости оксида алюминия в криолитовых расплавах при температурах около 1000 °C наиболее часто используют метод визуального наблюдения, поскольку при освещении направленным светом расплава хорошо заметно появление первых кристалликов оксида.

В настоящей работе растворимость оксидов бора и алюминия В расплавах основе калиевого криолита легкоплавких на определяли по полученным методом ТА фазовым диаграммам и методом изотермического насыщения. Методом ТА проводили исследования при охлаждении от 800 °С до солидуса. температур на 10-20 градусов ниже температуры Метод изотермического насыщения использовали при исследовании растворимости оксидов в расплавах при температурах выше 800 °С, то есть при температурах, превышающих начало охлаждения по методу ТА.

1.2.1 Метод изотермического насыщения

Метод изотермического насыщения заключается в том, что в исследуемый расплав добавляют оксид, выдерживают при определенной температуре, после чего берут пробы расплава на химический элементный анализ. Время выдержки подбирают таким образом, чтобы оксид растворился, а в случае неполного растворения – произошла его седиментация.

1.2.2 Определение растворимости оксидов по фазовым диаграммам

Построение квазибинарной фазовой диаграммы «криолит»-«оксид» проводили по значениям температур ликвидуса и солидуса, полученным методом ТА и величинам растворимости, определенным изотермическим насыщением. Как правило, фазовые диаграммы таких квазибинарных систем имеют вид диаграммы с простой эвтектикой. Левая нисходящая ветвь ликвидуса соответствует температуре первичной кристаллизации расплавленного криолита. Правая восходящая ветвь линии ликвидуса определяется температурой кристаллизации оксида и соответствует величинам его растворимости в расплавленной соли при определенной температуре. 1.3 Метод спектроскопии электрохимического импеданса для определения электропроводности расплавов

Современным и точным методом измерения электропроводности является метод спектроскопии электрохимического импеданса (СЭИ) [16-18]. Метод СЭИ основан на регистрации импеданса электрохимической системы в зависимости от частоты переменного тока малой амплитуды.

Импеданс определяли, как общее комплексное сопротивление системы протеканию переменного тока (AC) на заданной частоте. К системе прикладывали переменное напряжение, изменяющееся по гармоничному закону и имеющее малую амплитуду, при этом через систему проходит ток синусоидальной формы. Импеданс (Z) состоит из действительной части (омическое сопротивление, R, определяющее искомое сопротивление среды) и мнимой, реактивной части (X), определяющей процессы, протекающие на электродах. В прямоугольной системе координат импеданс можно выразить уравнением:

$$Z = R + iX \tag{1.1}$$

В полярных координатах импеданс выражается в виде зависимости величины |Z| от фазового угла ф. Для индивидуальных сопротивлений R (Ом) отклик на приложенное напряжение (Е) подчиняется закону Ома, который записывается как

$$\mathbf{I} = \mathbf{E}/\mathbf{R} \tag{1.2},$$

где I – сила тока (А). Это означает, что фазовый угол ф обращается в ноль. Полное комплексное сопротивление (импеданс) ячейки можно записать также следующим образом:

$$Z=Z'-jZ''$$
 (1.3)

где Z[/] - активная (действительная), Z^{//} - реактивная (мнимая) составляющие

импеданса, ј определяет «сдвиг фазы» јф. Графическая зависимость $Z(\omega)$ (ω - угловая частота) в координатах Z', Z'' (координаты Найквиста) называется годографом импеданса, или его спектром. Типичный вид годографа, полученный в расплавленном калиевом криолите KF-AlF₃ (KO=1,3), приведен на рисунке 1.3.

Рисунок 1.3 – Годограф, полученный в расплаве KF-AlF₃ (KO=1,3) при 815 °C

Сопротивление расплава определяли из годографа: по значению активной части импеданса в точке пересечения кривой с осью абсцисс (Z''=0). Электропроводность (κ) рассчитывали по формуле:

$$\kappa = K/R \tag{1.4},$$

где К – константа ячейки (м⁻¹•10⁻²), а R - омическое сопротивление образца (Ом).

Для измерений электропроводности образцов расплавов на основе калиевого криолита использовали электрохимическую ячейку с двумя параллельными электродами.

Основной методической особенностью измерения является то, что

электроды жестко закрепляли с помощью планки, изготовленной из нитрида бора. В противном случае, межэлектродное расстояние может изменяться во время измерений вследствие температурного расширения и отсутствия необходимой жесткости крепления параллельных электродов при температуре порядка 1000 °С. Изменение межэлектродного расстояния, а значит и сопротивления электролита между электродами, вносит погрешность в определение электропроводности. Площадь погружения электродов должна быть постоянной BO всех экспериментах. В качестве электродов использовали молибденовую проволоку диаметром 1,5•10⁻³ м.

Схема измерительной ячейки показана на рисунке 1.4.

Пробирку с тиглем, содержащим исследуемую соль (40-60 г), помещали в печь, вакуумировали, заполняли инертным газом (аргоном) и нагревали до заданной температуры. После того, как электролит плавился, в него погружали термопару (Pt-Pt/Rh) и электроды на глубину 1•10⁻³ м. Затем проводили измерения импеданса с помощью прибора Zahnerelektrik IM6E в интервале частот переменного тока от 1 до 10⁵ Гц с амплитудой напряжения переменного тока 5•10⁻³ В. Измерение импеданса проводили по три раза при каждом значении температуры. К алундовой трубке-газоподводу крепили устройство для загрузки добавки, которая поступала в расплавленный электролит в потоке инертного газа. После каждой добавки фиксировали изменение сопротивления электролита. В течение всего эксперимента положение электродов не менялось.

Экспериментально определяемая величина сопротивления электролита зависит от многих факторов, в том числе от геометрии измерительной ячейки, размера и формы электродов, расстояния между электродами и т.д. Параметр, характеризующий отношение расстояния между электродами к площади их поверхности, определяется экспериментально и называется константой электрохимической ячейки (К).

18

Рисунок 1.4 - Схема ячейки с параллельными электродами для измерения электропроводности

Константу экспериментальной ячейки с параллельными электродами, предназначенную для измерения электропроводности, определяли по справочным электропроводности расплава известной значениям стандартного С электропроводностью интервале близком В температур, К температурам исследований.

Константу ячейки рассчитывали по уравнению:

$$\mathbf{K} = \boldsymbol{\kappa}^* \cdot \mathbf{R}^* \tag{1.5},$$

где κ^* — справочная величина электропроводности стандартного расплава, R^* — измеренное омическое сопротивление стандартного расплава.

19

В качестве стандартного расплава с известной электропроводностью выбирали расплавленный калиевый криолит KF-AlF₃ или калий-натриевый криолит KF-NaF-AlF₃ с KO=1,3 или 1,5 [19].

Как правило, зависимость константы ячейки от температуры в температурном интервале, не превышающем 100-150 °С, описывается линейным уравнением, вида:

$$\mathbf{K} = \mathbf{A} + \mathbf{B} \cdot \mathbf{t} \tag{1.6},$$

где А и В – экспериментально определяемые величины, t - температура (°С).

В качестве примера на рисунке 1.5 приведена зависимость константы ячейки с параллельными электродами от температуры, полученная в стандартном электролите KF-AlF₃ с KO=1,3.

Рисунок 1.5 – Зависимость константы ячейки с параллельными электродами от температуры (стандартный электролит KF-AlF₃ с KO=1,3)

Температурную зависимость константы ячейки учитывали при расчете электропроводности расплавленной смеси.

Погрешность измерений электропроводности криолитовых расплавов методом спектроскопии электрохимического импеданса в ячейке с параллельными электродами с использованием аналогичного измерительного оборудования была рассчитана в соответствии с ГОСТ Р 50.2.038-2004 в работе [4], она составляет 8 %.

1.4 Гравиметрический метод определения плотности расплавов

Плотность расплавленных солей измеряли гравиметрическим методом (метод Архимеда), который заключается в мониторинге изменения веса платинового груза сферической формы, опускаемого в расплавленную соль.

Схема измерительной ячейки представлена на рисунке 1.6.

Ячейка представляла собой кварцевую пробирку, закрытую пробкой из вакуумной резины, которая была соединена с пространством электронных весов "Mettler AT20". Платиновый груз подвешивали на платиновую проволоку, длиной около 0,6 м и диаметром 0,5 мм, соединенную с электронными весами. Погружение в расплав и извлечение из расплава платинового груза производили при помощи подъемника. На этом же подъемнике была установлена печь. Все измерения проводили в атмосфере аргона, который с постоянной скоростью продувался через ячейку. При этом поток инертного газа препятствовал интенсивному оседанию паров соли на тонкой нити подвеса. Платиновый сферический груз последовательно взвешивали в газовой атмосфере, а затем в исследуемой расплавленной соли. Разность масс груза в газовой атмосфере и в расплаве, отнесенная к объему груза, позволяет найти плотность расплавленной соли по уравнению

$$\rho = \frac{(m_1 - m_2)}{V}, \tag{1.7}$$

где ρ – плотность расплава, (кг/м³), m₁ – масса непогруженного груза, (г), m₂ – масса погруженного груза, (кг), V – объем груза, (м³).

Рисунок 1.6 – Схема установки для измерения плотности расплавленных солей: 1 - шлюз; 2 - кварцевая пробирка; 3 - патрубок для отвода газа;

4 - алундовая трубка; 5 – проволока Pt-Rh; 6 – сферический груз Pt;

7 - контейнер для расплава; 8 - термопара в чехле; 9 - печь; 10 – подъёмник

Предварительно платиновый груз калибровали по расплавам эвтектики FLiNaK с известной плотностью [20].

Величина погрешности при измерении плотности расплавленных солей гравиметрическим методом, рассчитанная в соответствиями требований ГОСТ Р 50.2.038-2004, не превышала 5% [21].

1.5 Методы изучения состава и структуры сплавов и расплавов

1.5.1 Рентгенофазовый анализ

Рентгенофазовый анализ (РФА) закаленных плавов проводили при помощи автоматического рентгеновского дифрактометра Rigaku D/MAX-2200VL/PC. Пробы для РФА отбирали намораживанием расплавленной соли на холодный стеклоуглеродный стержень.

1.5.2 Элементный химический анализ

Элементный химический анализ исследуемых систем проводили при помощи оптического эмиссионного спектрометра с индуктивно-связанной плазмой iCAP 6300 Duo.

Пробы для элементного анализа отбирали в течение или в конце физикохимических исследований с помощью танталовой ложечки. Водные растворы образцов закаленного криолитового расплава готовили по методике, разработанной в работе [3].

1.5.3 Раман спектроскопия

Раман спектроскопия регистрирует колебательные спектры комбинационного рассеяния, возникающие в молекулах при смещении ядер от положения равновесия при облучении вещества монохроматическим светом. Рассеянный свет отличается исходного излучения ОТ на величину, соответствующую частоте нормальных колебаний молекулы, что является индивидуальной характеристикой молекулы [22, 23].

Раман спектроскопию проводили при помощи Рамановского микроскопспектрометра U 1000. Микроскоп позволяет регистрировать спектры КР для объектов размером менее 1 мкм и обладает абсолютной чувствительностью до 10⁻¹⁵ кг. Образцы для исследования готовили путем закалки, выливая расплав тонким слоем в массивную стальную изложницу.

1.6 Методика приготовления криолитовых расплавов для физикохимических исследований

Расплавленные смеси для физико-химических исследований готовили из индивидуальных веществ AlF₃ (хч), NaF (осч), KBF₄ (осч), B₂O₃ (осч) и KF·HF (хч) (BEKTOH).

Фторид алюминия очищали от кислородсодержащих примесей, основной из которых является оксид алюминия, фторидом аммония. Очистку производили в тигле из стеклоуглерода. Часть NH₄F насыпали на дно тигля (10 % от массы AlF₃), другую часть смешивали со фторидом алюминия в соотношении 12 г NH₄F на 100 г AlF₃. Смесь нагревали до 450-500 °C и выдерживали при этой температуре около 6 часов. При этом происходит следующая реакция:

$$6NH_4F + Al_2O_3 = 2AlF_3 + 6NH_3 + 3H_2$$
(1.8)

Очищенный AlF₃ использовали для приготовления криолитов калия и натрия.

Калиевый криолит KF-AlF₃ с заданным КО получали сплавлением очищенного фторида алюминия с кислым фторидом калия. Массу KF·HF определяли, исходя из мольного соотношения KF:HF=1:1 в исходной соли. Затем добавляли фторид алюминия, перемешивали. Смесь помещали в тигель из стеклоуглерода и нагревали, поднимая температуру до 750 °C в течение трех часов. В течение этого времени из расплава частично удаляется HF вследствие термического разложения KF·HF. Затем расплав выдерживали при 750 °C в течение 3-4 часов до полного удаления HF. Готовый электролит проверяли на отсутствие HF путем определения pH водного раствора проб электролита.

Натриевый криолит NaF-AlF₃ с заданным КО готовили сплавлением солей

AlF₃ и NaF в соответствующих количествах.

Натриево-калиевый криолит KF-NaF-AlF₃ готовили сплавлением криолитов NaF-AlF₃ и KF-AlF₃ с одинаковым KO.

КВF₄ (хч) (ВЕКТОН) использовали в опытах без дополнительной очистки.

В₂О₃ (осч) (ВЕКТОН) переплавляли в платиновом тигле в течение 1 часа при температуре 800 °С. Остывший плав хранили в эксикаторе.

1.7 Составы криолитовых расплавов для физико-химических исследований

Составы криолитовых расплавов для исследования влияния борсодержащих физико-химические свойства были выбраны добавок на на основании рекомендованных в работах [3-11] электролитов для проведения низкотемпературного электролиза алюминия. Состав исследуемых электролитов приведен в таблице 1.1.

Таблица 1.1 Состав криолитовых расплавов для исследования влияния добавок KBF₄ и B₂O₃ на физико-химические свойства

Состав	КО	KF		NaF		AlF ₃		Растворимость Al ₂ O ₃ при 800 °C		Т _{лик} , °С
		Мол.%	Mac.%	Мол.%	Mac.%	Мол.%	Mac.%	Мол.%	Mac.%	
KF-AlF ₃	1,3	56,5	47,8	-	-	43,5	52,2	4,76	6,85	620
	1,4	58,3	49,6	-	-	41,7	50,4	5,24	7,59	672
	1,5	60,0	51,4	-	-	40,0	48,6	5,76	8,35	727
KF-NaF-AlF ₃	1,3	40,5	35,7	16,0	10,0	43,5	54,3	2,83	4,40	717
	1,5	44,2	39,4	15,8	10,0	40,0	50,6	4,47	6,75	773

Криолитовое отношение (КО) рассчитывали по формуле:

$$KO = \frac{\left[KF\right] + \left[NaF\right]}{\left[AlF_3\right]},\tag{1.9}$$

где [KF] и [NaF] – мольные концентраций фторидов щелочных металлов, [AlF₃] – мольная концентрация фторида алюминия

ГЛАВА 2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ФТОРИДНЫХ РАСПЛАВОВ НА ОСНОВЕ КАЛИЕВОГО КРИОЛИТА, СОДЕРЖАЩИХ СОЕДИНЕНИЯ БОРА

2.1 Физико-химические свойства расплавов фторидных солей, содержащих КВF₄ и B₂O₃ (литературный обзор)

2.1.1 Влияние КВF₄ на физико-химические свойства фторидных расплавов

Данных о физико-химических свойствах криолитовых расплавов NaF-AlF₃ и KF-AlF₃, содержащих тетрафторборат калия KBF₄, в литературе не найдено.

Влияние КВF₄ на свойства расплавленных систем наиболее тщательно изучено на примере фторидов щелочных металлов и их смесей [20, 24-31].

При исследовании поведения KBF_4 в расплавленных солях главным вопросом остается его термическая устойчивость при высоких температурах. В работе [20] на основании рентгенофазового анализа закаленных образцов системы FLiNaK-KBF₄ сделан вывод об отсутствии в расплавленной смеси фторидов щелочных металлов (LiF, NaF, KF) и KBF₄ новых бинарных соединений. Однако была замечена потеря веса образцов во время физико-химических исследований, что объясняется возможной реакцией термического разложения KBF₄ с образованием газообразного BF₃. Отмечается, что тетрафторбориды лития и натрия LiBF₄ и NaBF₄ термически менее устойчивы, чем KBF₄, и разлагаются уже при 550 °C.

Тем не менее, в монографии [30] указывается на то, что термическая диссоциация KBF₄ начинается уже при температуре плавления (530 °C) и протекает в соответствии со следующими уравнениями реакций:

 $2KBF_4(\mathfrak{m}) \rightarrow K_2BF_5(\mathfrak{m}) + BF_3(\Gamma) \qquad (T=530 \text{ °C}), \qquad (2.1)$

$$KBF_4(\mathfrak{K}) \rightarrow KF(\mathfrak{K}) + BF_3(\Gamma) \qquad (T = 770 \text{ °C}) \qquad (2.2)$$

Фазовые диаграммы двойных систем NaF-KBF₄ и KF-KBF₄ известны [32]. Они представляют собой системы с простой эвтектикой.

Плотность расплавов FLiNaK-KBF₄-B₂O₃ изучали в работе [20]. Оказалось, что при добавлении KBF₄ (до 20 мол.%) в расплав FLiNaK плотность практически не меняется. Так, если плотность расплава без борсодержащих добавок при 750 °C составляет 1,941•10³ кг/м³, то при добавлении 5, 10 и 20 мол. % тетрафторбората калия плотность составила 1,935•10³ кг/м³, 1,937•10³ кг/м³ и 1,927•10³ кг/м³, соответственно.

2.1.2 Влияние В₂О₃ на физико-химические свойства фторидных расплавов

Взаимодействие B_2O_3 с фторидами щелочных металлов хорошо изучено словацкими учеными в связи с задачей получения TiB₂ электрохимическим синтезом [24-29]. Они определили [27], что система B_2O_3 -LiF имеет область несмешиваемости в интервале 5-23 мол.% B_2O_3 . При более низких концентрациях (до 5 мол.%) B_2O_3 взаимодействует с расплавом LiF с образованием LiBO₂ и BF₃ (или LiBF₄), а при более высоких концентрациях B_2O_3 - образуется Li₂B₄O₇.

Известна фазовая диаграмма тройной системы LiF-NaF-B₂O₃ [28]. Соединений в этой системе не найдено. В области кристаллизации LiF существует зона несмешиваемости жидкостей при концентрациях KF до 12 мол.%.

Механизм растворения B_2O_3 в расплавах LiF, NaF и KF и ионную структуру расплавов исследовал Makyta [29] методами криоскопии и рентгеновского анализа. Было обнаружено, что в системах B_2O_3 -LiF и B_2O_3 -NaF существуют ионы Li⁺ или Na⁺, BO_2^- , $B_4O_7^-$, и летучий BF₃. Однако в системе B_2O_3 -KF вместо BF₃ образуется KBF₄, а также K₂B₄O₇ и KBO₂.

Влияние B_2O_3 на плотность расплавов LiF и KF исследовано в работе [26]. Введение B_2O_3 в LiF приводит к увеличению плотности расплава, в то время, как добавки B_2O_3 в расплавленный KF уменьшают плотность. Это объясняется различными реакциями, протекающими при взаимодействии B_2O_3 с фторидами лития и калия. При добавлении B_2O_3 в расплав LiF образуются метаборат лития и летучий BF₃. В результате взаимодействия B₂O₃ и KF образуется полимеризованный KBF₄, и, как следствие, увеличивается мольный объем и уменьшается плотность.

Фазовые равновесия в тройных системах NaF-NaBF₄-B₂O₃ и KF-KBF₄-B₂O₃ и syчали авторы статьи [33]. Обе системы представляют собой простые эвтектики. В более поздней работе [34] было найдено, что в системе NaF-NaBF₄-B₂O₃ при низких концентрациях оксида образуется соединение Na₃B₃O₃F₆, а в смесях, содержащих до 33,3 мол.% B₂O₃ – соединение Na₂B₃O₃F₅. Авторы [28] исследовали сечение KF-B₃O₃F₃ (до 60 мол.% B₃O₃F₃) в системе KF-KBF₄-B₂O₃. Было найдено тройное соединение K₃B₃O₃F₆, конгруэнтно плавящееся при 560 °C.

Взаимодействие В₂O₃ с натриевым криолитом изучал Беляев [30], который обнаружил неограниченную растворимость оксида бора в криолите при температурах около 1000 °C. Реакция растворения была представлена следующим образом:

$$Na_3AlF_6 + 2B_2O_3 = 3NaBO_2 + AlF_3 + BF_3$$
 (2.3)

Поведение B₂O₃ в натриевом криолите изучали авторы [31]. Указывается на то, что оксид бора, добавленный в натриевый криолит, собирается на его поверхности из-за большой разности в величинах плотности и взаимодействует с компонентами расплава с образованием летучего BF₃ по реакции:

$$2AlF_{3}(\mathbf{x}) + B_{2}O_{3}(\mathbf{x}) = Al_{2}O_{3}(\mathbf{x}) + 2BF_{3}(\mathbf{r})$$
(2.4)

Величины плотности натриевого криолита, оксидов бора и алюминия при 1000 °С приведены в Таблице 2.1.

Авторы [35] отмечают, что B_2O_3 взаимодействует с Na_3AlF_6 и еще более активно - с AlF_3 . Доля потерь B_2O_3 в виде BF_3 растет с уменьшением криолитового отношения. Зависимость потери массы разных смесей от времени выдержки при 900 °C показана на рисунке 2.1. Особенно бурно проходит реакция с калиевым криолитом состава KAlF₄ – продуктом взаимодействия KBF₄ и Al.

Расплав	Плотность,	Поверхностное натяжение,
	кг/м ³ •10 ³	Н/м•10²
В ₂ О ₃ (ж)	1,518	830
Al ₂ O ₃ (ж)	3,03	10000
Na ₃ AlF ₆ (ж)	2,095	1360

Таблица 2.1. Плотность и поверхностное натяжение некоторых веществ при 1000 °C [31]

Рисунок 2.1 - Зависимость потери массы разных смесей от времени выдержки при 900 °C [35]: 1) 70KAlF₄ + 30 B₂O₃; 2) 63 Na₃AlF₆ + 37B₂O₃; 3) 33KCl + 33 AlF₃ + 34 B₂O₃; 4) 70 Na₃AlF₆ + 30Na₂B₄O₇

Тем не менее, в работе [36] показано, что если B_2O_3 добавлять в криолит в смеси с Al_2O_3 , то потеря массы электролита значительно уменьшается вследствие образования комплексных соединений $nAl_2O_3 \cdot mB_2O_3$, наличие которых в остывших образцах подтверждено методом рентгенофазового анализа.

Действительно, на фазовой диаграмме Al_2O_3 - B_2O_3 имеется два инкогруэнтно плавящихся соединения $Al_4B_2O_9$ (1308 K) и $Al_{18}B_4O_{33}$ (2223 K) [36]. В области составов с высоким содержанием оксида бора (более 60 мол.%) образуются стекла, которые не кристаллизуются в процессе длительных отжигов.

На основании литературных данных о физико-химических свойствах расплавов фторидных солей щелочных металлов и криолитов, содержащих соединения бора (KBF₄, B_2O_3), можно сделать вывод, что основная проблема – это потеря бора в виде летучего соединения BF₃, образующегося либо в результате термической диссоциации KBF₄, либо в результате химического взаимодействия криолитовых расплавов с B_2O_3 .

С точки зрения возможности использования расплавленных солей в процессе металлотермического ИЛИ электрохимического производства алюминиевых сплавов ключевыми свойствами являются температура ликвидуса расплавленных смесей, растворимость В них соединений легирующего взаимодействия, компонента И продуктов плотность образующихся расплавленных смесей, а также электропроводность.

2.2 Исследование термической устойчивости систем [KF-AlF₃]-KBF₄ и [KF-NaF-AlF₃]-KBF₄(B₂O₃)

При изучении поведения KBF₄ в расплавленных солях при высоких температурах главным вопросом остается его термическая устойчивость. Термическую устойчивость криолитовых расплавов KF-AlF₃ и KF-NaF-AlF₃ с KO=1,3-1,5, содержащих KBF₄ и B₂O₃, исследовали методами РФА, ТГ и ДСК в комплексе с масспектрометрией, термической выдержкой с последующим элементным химическим анализом проб.

2.2.1 Рентгенофазовый анализ

Для РФА были приготовлены образцы калиевого криолита KF-AlF₃ с

КО=1,3, содержащие 15 мас.% КВF₄. Для этого расплавленную смесь криолита и тетрафторбората калия выдерживали в течение 2 ч при температуре 800 °C.

На рентгеновском спектре образца КF–AlF₃–КBF₄, приведенном на рисунке 2.2, были идентифицированы соединения KAlF₄ и K₃AlF₆.

Рисунок 2.2 - Рентгенограмма образца КF-AlF₃-(15 мас.%)КBF₄ с КО=1,3

Отсутствие на РФА спектрах характерных для соединений бора линий, возможно, связано с аморфным строением этих соединений [37].

2.2.2 Термогравиметрия и дифференциальная сканирующая калориметрия в комплексе с масспектрометрией

1) Система KF-AlF₃-KBF₄

Для анализа термической устойчивости системы KF-AlF₃-KBF₄ были предварительно приготовлены образцы KF–AlF₃ (KO=1,3) и KF–AlF₃–KBF₄(15 мол.%) (KO=1,3). Для исследований методом TГ и ДСК массы навесок образцов KF–AlF₃ и KF–AlF₃–KBF₄ составляли 12,2 и 19,5 мг,

соответственно. Измерения проводили в интервале температур от 35 до 800 °С.

На рисунке 2.3 приведены результаты ТГ и ДСК в комплексе с масспектрометрией образца KF–AlF₃ (KO=1,3). Эндотермический пик плавления имеет сложную форму: $T_{пл.} \approx 548$ °C, $T_{пика} \approx 566$ °C. Результаты измерения хорошо согласуются с данными фазовой диаграммы KF-AlF₃ [38]. В газовой фазе обнаружены только следы воды (а.е.м. 18 при температуре около 100 °C). Убыль массы образца, зафиксированная после начала плавления, составляет менее 1%, что указывает на низкое давление пара компонентов расплава $KF-AlF_3$ при температурах ниже 800 °C.

Рисунок.2.3 - Результаты анализа образца КF–AlF₃ (КО=1,3) методами ТГ и ДСК в комплексе с масспектрометрией

Результаты анализа образца KF–AlF₃–KBF₄(15 мол.%) представлены на рисунке 2.4. На кривой ДСК появляется эндотермический пик ($T_{пика} \approx 484$ °C), очевидно, связанный с введением в смесь KBF₄. При этой же температуре масспектрометр регистрирует увеличение ионных токов, указывающее на наличие в газовой фазе ионов F⁻ (а.е.м. 19) и BF₂⁺ (а.е.м. 49 – линия 100%

интенсивности), подтверждающее улетучивание BF₃.

Рисунок 2.4 - Результаты анализа образца КF–AlF₃–КВF₄(15 мол.%) (КО=1,3) методами ТГ и ДСК в комплексе с масспектрометрией

Потеря массы образца начинается уже при 400 °C и при температуре 780 °C составляет около 3 %, что, однако, все еще остается приемлемым для проведения технологических процессов с использованием калиевого криолита с добавками KBF₄ при температурах ниже 800 °C.

2) Система KF-NaF-AlF₃-B₂O₃

Для анализа термической устойчивости системы KF-NaF-AlF₃-B₂O₃ были приготовлены образцы KF–NaF(10 мас.%)-AlF₃ (KO=1,3) и KF–NaF(10мас.%)-AlF₃–B₂O₃(10 мол.%) (KO=1,3). Массы навесок KF–NaF-AlF₃ и KF–NaF-AlF₃–B₂O₃ составили 14 мг каждая.

ТГ и ДСК зависимости от температуры для расплавленных солей KF–NaF-AlF₃ и KF–NaF(10мас.%)-AlF₃–B₂O₃(10 мол.%) приведены на рисунках 2.5 и 2.6.

Рисунок 2.5 - Результаты анализа образца КF–NaF-AlF₃ (КО=1,3) методами ТГ и ДСК

Введение в калиевый криолит KF–AlF₃ натриевого криолита NaF-AlF₃ привело к появлению двух эндотермических пиков ($T_{пика} = 567$ и 581 °C), соответствующих началу плавления солей KF–AlF₃ и NaF-AlF₃ (температура солидуса). Убыль массы образца не превышает 0.5%.

Влияние добавки B_2O_3 (рисунок 2.6) выражено в сдвиге температур плавления в меньшую сторону ($T_{пика} = 560$ и 578 °C) и в уменьшении потери массы образца, которая составила 0,37%. В газовой фазе фторид-боридных ионов не обнаружено, что указывает на то, что образование BF₃ не происходит.

Можно заключить, что все проанализированные методами TГ и ДСК системы KF–AlF₃, KF–AlF₃–KBF₄, KF-NaF-AlF₃, KF-NaF-AlF₃-B₂O₃ являются термически устойчивыми в исследуемом интервале температур (от комнатной температуры до 800 °C).

Рисунок 2.6 - Результаты анализа образца KF–NaF(10мас.%)-AlF₃– В₂O₃(10мол.%) (KO=1,3) методами ТГ и ДСК в комплексе с масспектрометрией

Следует отметить, что ни для одного исследуемого образца на кривых ДСК зафиксированы калорические эффекты, не были четко соответствующие температурам ликвидуса. Тем не менее, известно, что температура ликвидуса систем KF-AlF₃ и KF-NaF(10 мас.%)-AlF₃ с KO=1,3 составляет 622 и 779 °С, соответственно [8]. Трудности при определении температуры ликвидуса солевых галогенидных смесей методом ДСК были замечены авторами [37, 39], которые исследовали системы LiCl-KCl. Это было объяснено изменением поверхностного натяжения на границе расплавленная соль – дно тигля-контейнера. Расплав растекается по дну и натекает на стенки, что существенно сказывается на величине теплового потока от образца к термоконвектору калориметра. Условия теплопереноса становится неадекватными по отношению к твердому образцу сравнения (как правило, сапфиру), и сигнал ДСК смещается. В наших экспериментах температура нагрева образцов не превышала 800 °C, в противном случае расплавленный образец мог вытечь из тигля.

2.2.3 Химический анализ содержания бора в расплаве KF–AlF₃–KBF₄ в процессе исследований методом термического анализа

Термическую устойчивость расплавов $KF-AlF_3-KBF_4$ проверяли в условиях проведения физико-химических исследований, а именно в процессе измерений температуры ликвидуса методом ТА. В течение опыта температуру исследуемой соли меняли в процессе цикла «охлаждение–нагрев», как правило, в интервале 590 - 750 °C. Изменение температуры системы в процессе проведения эксперимента показано на рисунке 2.7.

Рисунок 2.7 – Изменение температуры (1) и концентрации бора (2) в системе КF–AlF₃–КBF₄ в течение нескольких циклов «охлаждение–нагрев»

Длительность каждого цикла «охлаждение–нагрев» составляла около 3 часов. Добавки KBF₄ загружали в электролит при температуре расплавленной смеси 750 °C. На рисунке 2.7 время загрузки очередной добавки KBF₄ отмечено вертикальными штрихпунктирными линиями. Образцы электролита
намораживали на холодную алундовую трубочку во время опыта до и после цикла «охлаждение-нагрев».

Содержание бора в образцах определяли методом ICP. Из рисунка 2.7 следует, что концентрация бора практически не меняется в процессе цикла «охлаждение–нагрев», что подтверждает устойчивость KBF₄ в расплавленном криолите KF–AlF₃ при температурах ниже 800 °C.

Итак, несмотря на то, что определенная термогравиметрическим методом потеря массы образца KF–AlF₃–(15 мол. %)KBF₄ с KO = 1,3 составляет около 3% в температурном интервале 400–800°C, это не оказывает существенного влияния на изменение концентрации бора в электролите в процессе физико-химических исследований.

На основании этого можно сделать вывод, что легкоплавкие расплавы борсодержащих калиевых криолитов могут использоваться в процессе получения алюминиевый сплавов.

Результаты исследования термической устойчивости расплавленных солей KF-AlF₃-KBF₄ методами ТГ и ДСК в комплексе с масспектрометрией, а также результаты определения концентрации бора в расплавленной соли KF–AlF₃–KBF₄ в процессе ТА опубликованы в [40, 41].

2.3 Исследование температуры ликвидуса борсодержащих криолитовых расплавов [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃)

Исследование влияния добавок KBF₄ и B₂O₃ к калиевому и смешенному калиево-натриевому криолитам на температуру ликвидуса проводили методом TA. Составы исследуемых расплавов приведены в таблице 1.1.

2.3.1 Влияние КВF₄ на температуру ликвидуса расплавов KF-AlF₃ и KF-NaF-AlF₃

Результаты измерений температуры ликвидуса систем [KF-AlF₃]-KBF₄ с

КО=1,3 и 1,4 и содержанием КВF₄ до 15 мол.%, и [KF-NaF(10мас.%)-AlF₃]-КВF₄ с КО=1,3 и 1,5 и содержанием КВF₄ до 10 мол.%, показаны на рисунке 2.8.

Рисунок 2.8 - Влияние КВF₄ на температуру ликвидуса криолитов: 1 – KF-AlF₃ (KO=1,3); 2 – KF-AlF₃ (KO=1,4); 3 – KF-NaF(10мас.%)-AlF₃ (KO=1,3); 4 – KF-NaF(10мас.%)-AlF₃ (KO=1,5)

Из рисунка 2.8 следует, что добавки KBF₄ в калиевый криолит и смесь калиевого и натриевого криолитов с KO=1,3-1,5 значительно повышают температуру ликвидуса. Так, добавка 5 мол.% KBF₄ в KF-AlF₃ с KO=1,3 повышает температуру ликвидуса на 63 градуса (с 617 до 680 °C), добавка того же количества KBF₄ в расплав KF-NaF(10мас.%)-AlF₃ с KO=1,5 повышает температуру ликвидуса на 50 градусов (с 790 до 840 °C). Этот факт необходимо учитывать при выборе состава расплавленной смеси, в которую входит преимущественно калиевый криолит, для практического применения [42].

2.3.2 Влияние B_2O_3 на температуру ликвидуса расплавов KF-AlF₃ и KF-NaF-AlF₃

Результаты измерений температуры ликвидуса в системе [KF-AlF₃]-B₂O₃ с KO, изменяющимся в интервале 1,3-1,5, показаны на рисунке 2.9. Следует заметить, что добавка NaF в количестве 15,7 мол.% к расплаву KF-AlF₃ с KO=1,5 влияет на повышении температуры ликвидуса практически на 70 градусов. Температура ликвидуса системы KF-NaF(15,7мол.%)-AlF₃ составляет 787 °C [8]. Из рисунка 2.9 следует, что температура ликвидуса во всех исследуемых солях увеличивается на 40-50 градусов при добавке B₂O₃ в количестве 3 мол.%, но при последующем добавлении B₂O₃ (до 10 мол.%) температура ликвидуса этой системы практически не меняется.

Рисунок 2.9 - Влияние B₂O₃ на температуру ликвидуса систем [KF-AlF₃]-B₂O₃ (KO=1,3-1,5) и [KF-NaF-AlF₃]-B₂O₃ (KO=1,5)

Действительно, практически все фторидные соли, применяемые в качестве

добавок в промышленные криолит-глиноземные электролиты, повышают температуру ликвидуса калиевого криолита с KO<1,7. Это хорошо видно на рисунке 2.10, где приведена зависимость температуры ликвидуса расплавленной соли KF-AlF₃ (KO=1,3) от концентрации различных добавок фторидов: KF [38], NaF [5], LiF [8], CaF₂ [10].

Рисунок 2.10 - Влияние различных добавок на температуру ликвидуса расплава KF-AlF₃ с KO=1,3: 1 – CaF₂ [10], 2 – KBF₄, 3 – NaF (добавлялся в виде NaF-AlF₃ с KO=1,3 [5],

 $4 - B_2O_3$, 5 – LiF (добавлялся в виде LiF-AlF₃ с KO=1,3) [8]

Для сравнения на этом рисунке показаны полученные в настоящей работе экспериментальные данные по температурам ликвидуса расплава KF-AlF₃ (KO=1,3) с добавками борсодержащих соединений KBF₄ и B₂O₃. Отметим, что добавки NaF и LiF вводили в расплав KF-AlF₃ с KO=1,3 в составе солей NaF-AlF₃ и LiF-AlF₃, имеющих такое же KO. 2.4 Исследование растворимости Al₂O₃ в борсодержащих криолитовых расплавах [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃)

2.4.1 Влияние KBF_4 на растворимость Al_2O_3 в борсодержащих криолитовых расплавах $KF-AlF_3$ и $KF-NaF-AlF_3$

Известно, что добавки Al₂O₃ в расплавленные соли калиевого и смеси калиевого и натриевого криолитов с любым КО понижают температуру ликвидуса [7, 9, 43].

Влияние добавок Al_2O_3 на температуру ликвидуса криолитов, содержащих KBF₄: KF-AlF₃-KBF₄ и KF-NaF(10 мас.%)-AlF₃-KBF₄ (KO=1,3), показано на рисунках 2.11 и 2.12. На этих же рисунках приведена температура ликвидуса соответствующих криолитовых смесей без добавок KBF₄ [9]. Добавки Al_2O_3 в расплавленные соли калиевого и смеси калиевого и натриевого криолитов понижают температуру ликвидуса как расплавленных смесей, содержащих добавки KBF₄, так и без них. Линии ликвидуса, соответствующие всем показанным на рисунках составам, имеют эвтектическую точку минимума, причем координаты этой точки в расплавленных солях с большей концентрацией KBF₄ смещаются в сторону увеличения содержания Al_2O_3 [44].

Растворимость Al_2O_3 практически в два раза выше в расплавленных солях, содержащих добавки KBF₄. Так, в расплавах KF-AlF₃ и KF-AlF₃-KBF₄(3 мол.%) (KO=1,3) растворимость Al_2O_3 составляет, соответственно, 3,8 и 7,1 мол.% при 750 °C (рисунок 2.11), а в расплавах KF-NaF(10 мас.%)-AlF₃ и KF-NaF(10 мас.%)-AlF₃-KBF₄(3мол.%) (KO=1,3) она равна соответственно 2,9 и 5,5 мол. % при 800 °C (рисунок 2.12).

Полученные величины растворимости Al₂O₃ в исследуемых расплавах при 800 °C приведены в таблице 2.2.

Рисунок 2.11 - Влияние добавок Al₂O₃ на температуру ликвидуса расплавов (KO=1,3): 1 - KF-AlF₃-KBF₄(3 мол.%) и 2 - KF-AlF₃

Рисунок 2.12 - Влияние добавок Al₂O₃ на температуру ликвидуса расплавленных солей KF-NaF(10 мас.%)-AlF₃-KBF₄ (KO=1,3) с различным

содержанием КВF₄

Несмотря на то, что добавки KBF_4 в калиевый криолит и его смеси с натриевым криолитом повышают температуру ликвидуса, концентрационная область гомогенности растворов оксида алюминия в расплавленных солях KF-NaF-AlF₃-KBF₄ с концентрацией KBF_4 до 5 мол.% и KO=1,3-1,5 значительно расширяется.

При дальнейшем увеличении концентрации KBF_4 в расплавленной смеси $KF-NaF(10mac.\%)-AlF_3-KBF_4$ растворимость Al_2O_3 повышается незначительно (рисунок 2.12).

Результаты измерений растворимости Al₂O₃ в расплавленных солях KF-AlF₃-KBF₄ и KF-NaF-AlF₃-KBF₄ приведены в публикациях [40, 45, 46].

2.4.2 Влияние B_2O_3 на растворимость Al_2O_3 в борсодержащих криолитовых расплавах KF-AlF₃ и KF-NaF-AlF₃

Влияние Al_2O_3 на температуру ликвидуса систем KF-AlF₃-B₂O₃(5 мол.%) с KO=1,3-1,35 и KF-NaF-AlF₃-B₂O₃(5 мол.%) с KO=1,5 показано на рисунках 2.13 и 2.14. Там же для сравнения нанесены линии ликвидуса систем KF-AlF₃ с KO=1,3 и KF-NaF(10 мас.%)-AlF₃ с KO=1,5 [8].

Квазибинарные фазовые диаграммы [KF-AlF₃-B₂O₃]-[Al₂O₃] имеют вид, типичный для систем «криолит»-«Al₂O₃». Из рисунка 2.13 следует, что температура ликвидуса борсодержащих расплавленных солей понижается при добавке до 3,2 мол.% Al₂O₃, однако при последующих добавках оксида алюминия температура резко возрастает. Небольшое увеличение концентрации KF, т.е. увеличение KO от 1,3 до 1,35, существенно влияет на температуру ликвидуса, но практически не влияет на растворимость Al₂O₃, которая определяется правой восходящей линией ликвидуса. Для сравнения на рисунке 2.13 нанесена линия ликвидуса системы (KF-AlF₃)-(Al₂O₃) с KO=1,3. Растворимость Al₂O₃ в KF-AlF₃-B₂O₃(5 мол.%) по величине сравнима с растворимостью в KF-AlF₃ в температурном интервале от ликвидуса до 750 °C, но она ниже при более высоких температурах. Так, в расплавах KF-AlF₃-B₂O₃(5 мол.%) и KF-AlF₃ растворимость

Al₂O₃ составляет 4,0 и 4,8 мол.%, соответственно, при 800 °С.

Рисунок 2.13 - Влияние добавок Al₂O₃ на температуру ликвидуса расплавленных солей KF-AlF₃-B₂O₃(5 мол.%) и KF-AlF₃ [8]

Величины растворимости Al₂O₃ в исследуемых криолитовых расплавах, содержащих B₂O₃ и KBF₄ приведены в таблице 2.2.

Таблица 2.2. Растворимость Al_2O_3 в борсодержащих криолитовых расплавах при $800^{\circ}C$

Состав расплава	КО	Растворимость Al ₂ O ₃	
	Ro	Мол.%	Mac.%
KF-AlF ₃	1,3	4.8	6.9
KF-AlF ₃ -KBF ₄ (3мол.%)	1,3	6.0	8.3
KF-AlF ₃ -B ₂ O ₃ (5мол.%)	1,35	4.0	5.8
KF-NaF(16 мол.%)-AlF ₃ -KBF ₄ (3 мол.%)	1,3	5.5	7.9
KF-NaF(16 мол.%)-AlF ₃ -KBF ₄ (5 мол.%)	1,3	6.2	8.8

В присутствии NaF в расплавленной криолитовой смеси ход кривой ликвидуса кардинально меняется (рисунок 2.15). В квазибинарной системе [KF-NaF(16 мол.%)-AlF₃-B₂O₃(5 мол.%)]–Al₂O₃ температура ликвидуса резко увеличивается с первыми добавками оксида алюминия.

Рисунок 2.14 - Влияние Al₂O₃ на температуру ликвидуса систем: 1 - KF- NaF(16 мол.%)AlF₃-B₂O₃(5 мол.%) и 2 - KF-NaF(16 мол.%)-AlF₃ с KO=1,5 [8]

Низкую растворимость Al_2O_3 в расплавленных солях, содержащих B_2O_3 , можно объяснить тем, что эти оксиды образуют соединения типа $nAl_2O_3 \cdot mB_2O_3$, для которых характерна ограниченная растворимость в криолитовых расплавах [31]. Фазовая диаграмма Al_2O_3 - B_2O_3 имеет два инконгруэнтно плавящихся соединения: $Al_4B_2O_9$ с T_{nn} =1035 °C и $Al_{18}B_4O_{33}$ с T_{nn} =1950 °C [47].

В итоге можно сделать вывод, что добавки B_2O_3 (до 5 мол.%) в KF-AlF₃ (KO=1,3-1,35) практически не влияют на растворимость Al₂O₃ в интервале температур от точки ликвидуса до 750 °C. При температурах выше 750 °C

растворимость Al₂O₃ в борсодержащих расплавленных солях ниже, чем в KF-AlF_{3.}

2.5 Исследование электропроводности расплавов [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃)

2.5.1 Влияние КВF₄ на электропроводность расплавов KF-AlF₃ и KF-NaF-AlF₃

Влияние добавок КВF₄ на электропроводность расплавов KF-AlF₃ и KF-NaF(10мас.%)-AlF₃ с KO=1,3 при T=800 °C показано на рисунке 2.15.

Рисунок 2.15 - Влияние добавок КВF₄ на электропроводность расплавов КF-AlF₃ и KF-NaF(10 мас.%)-AlF₃ с KO=1,3 при T=800 °C

Электропроводность практически не меняется при добавках KBF₄ до 10 мол. %. Это можно объяснить тем, что величины электропроводности компонентов KBF₄ и KF-AlF₃ с KO=1,3 близки. Так, электропроводность KBF₄,

согласно данным [48], составляет 1,2•10² Ом⁻¹•м⁻¹ при 700°С, тогда как электропроводность KF-AlF₃ с KO=1,3 равна 1,1•10² Ом⁻¹•м⁻¹ при 750 °С [9].

Измерения электропроводности систем KF-AlF₃-KBF₄ и KF-NaF(10мас.%)-AlF₃-KBF₄ с KO=1,3-1,5 в зависимости от концентрации KBF₄ были проведены в температурном интервале 620-800 °C. Результаты представлены на рисунке 2.16. Поскольку кривые температурных зависимостей электропроводности расплавов, содержащих до 10 мол.% KBF₄, практически совпадают, на этом рисунке приведены зависимости для трёх составов: базовый состав (KF-AlF₃ с KO=1,3) без добавок и расплавы с содержанием 2,5 и 7,5 мол.% KBF₄.

Рисунок 2.16. Зависимость электропроводности расплавов KF-AlF₃–KBF₄ (KO=1,3) от температуры и концентрации KBF₄:

1 - КВF₄ (0 мол.%), 2 - КВF₄ (2,5 мол.%), 3 - КВF₄ (7,5 мол.%)

Как видно из рисунка 2.16, по температурной зависимости электропроводности возможно определять температуру ликвидуса. Найденные по изменению электропроводности значения температуры ликвидуса системы KF-AlF₃–KBF₄ хорошо согласуются с данными TA [49].

2.5.2 Влияние B₂O₃ на электропроводность расплавов KF-AlF₃

Исследовано влияние B_2O_3 на электропроводность расплавов KF-AlF₃ с KO=1,5. Концентрационная зависимость электропроводности расплава KF-AlF₃-B₂O₃, содержащих до 5 мол.% B₂O₃, при 840 °C показана на рисунке 2.17 точками синего цвета. С добавками B₂O₃ электропроводность расплава KF-AlF₃-B₂O₃ заметно уменьшается. Так, добавка 5 мол.% B₂O₃ снижает электропроводность расплава KF-AlF₃ на 0,15•10² Oм⁻¹•м⁻¹.

Рисунок 2.17 - Влияние В₂О₃ и Al₂O₃ на электропроводность расплава KF-AlF₃ (KO=1,5)

При добавлении Al_2O_3 расплав $KF-AlF_3-B_2O_3(5)$ мол.%) ход кривой В электропроводности сохраняется (рисунок 2.17, точки красного цвета). Это, возможно, связанно с тем, что при взаимодействии B₂O₃ с KF-AlF₃ образуется оксид алюминия, который находится в расплаве в виде оксифторидных рисунке Для 2.17 комплексов. сравнения на приведена зависимость

электропроводности расплава KF-AlF₃ с KO=1,5 от концентрации Al₂O₃ при температуре 835 °C, рассчитаная по уравнению (2.6), приведенному в [9]:

$$\ln k = 2,24 - 0,029 \cdot C_{A12O3} + 0,00296 \cdot C_{NaF} + 0,319 \cdot KO - 2624,4/T \pm 0,012$$
(2.6)

где k – электропроводность, См/см; С_{Al2O3}, С_{NaF} – концентрации, мол.%; Т – температура, К.

На рисунке 2.17 видно, что электропроводность с введением добавок как Al_2O_3 , так и B_2O_3 практически совпадает в интервале концентраций от 0 до 3 мол.%, после чего падение электропроводности расплава KF-AlF₃-B₂O₃ не такое резкое.

Поскольку уравнение реакции взаимодействия B₂O₃ с калиевым криолитом можно записать в следующем виде:

$$2KF + 6KAlF_4 + B_2O_3 = 2KBF_4 + 3K_2Al_2OF_6$$
(2.7),

то уменьшение электропроводности калиевого криолита с добавками оксида бора объясняется образованием оксида алюминия. Влияние KBF₄, образующегося в результате реакции (2.7), то есть некоторое увеличение электропроводности, сказывается при более высоких концентрациях B₂O₃.

2.6 Исследование плотности борсодержащих криолитовых расплавов [KF-AlF₃]-KBF₄

Температурная и концентрационная (при 750 °C) зависимости плотности расплавленных солей KF-AlF₃ и KF-AlF₃-KBF₄ с KO=1,3 с содержанием KBF₄ 3, 5 и 7,5 мол.% представлены на рисунках 2.18 и 2.19.

Температурная зависимость плотности расплавленной соли KF-AlF₃-KBF₄ (KO=1,3) с различным содержанием KBF₄ имеет линейный характер и уменьшается с увеличением температуры (рисунок 2.18).

Рисунок 2.18 – Температурная зависимость плотности расплавленной соли КF-AlF₃-KBF₄ (KO=1,3) с различным содержанием KBF₄ (мол.%): 1 – 0, 2 – 3, 3 – 5, 4 – 7,5

С увеличением содержания KBF_4 в $KF-AlF_3$ плотность расплавленной смеси уменьшается (рисунок 2.19). Так, добавка KBF_4 в количестве 3 и 8 мол.% понижают плотность на 0,6 и 4,8 %, соответственно.

Уменьшение плотности расплава при введении KBF₄ в калиевый криолит является благоприятным фактором при использовании такой расплавленной соли в качестве флюса при рафинировании алюминия или алюмотермическом получении алюминиевых сплавов, поскольку способствует разделение жидкого металлического сплава и солевой части.

Рисунок 2.19 – Концентрационная зависимость плотности расплавленной соли KF-AlF₃-KBF₄ (KO=1,3) при 750 °C

Полученные результаты измерений плотности расплавленных солей KF-AlF₃ и KF-AlF₃-KBF₄ приведены в публикациях [45, 50].

Выводы по главе 2

1. Проведены исследования физико-химических свойств криолитовых расплавов [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃), содержащих добавки KBF₄ или B₂O₃, основных компонентов сырья для получения сплавов Al-B:

 измерены температуры ликвидуса методом термического анализа по кривым охлаждения. Выяснено, что:

а) добавка KBF₄ до 10 мол.% значительно повышает температуру ликвидуса расплавленных солей KF-AlF₃ и KF-NaF(10мас%)-AlF₃. Сохраняется тенденция

повышения температуры ликвидуса расплавленных солей на основе калиевого криолита с КО=1,3-1,5, характерная для большинства добавок фторидов щелочных металлов;

б) добавка B_2O_3 до 3 мол.% повышает температуру ликвидуса расплавленных солей KF-AlF₃ и KF-NaF(10мас%)-AlF₃, тогда как последующее добавление B_2O_3 до 10 мол.% практически не влияет на температуру ликвидуса исследованных систем.

– исследована термическая устойчивость расплавленных солей KF-AlF₃-KBF₄(15 мол.%) и KF-NaF-AlF₃-B₂O₃(10 мол.%) с KO=1,3 в интервале температур от 25 до 800 °C различными методами. Найдено, что:

а) по методу ТГ и ДСК потеря массы образцов КF-AlF₃-КBF₄(15 мол.%) при нагреве до 800 °C составляет 3%, однако это практически не сказывается на изменении концентрации бора в расплавленной соли в процессе физикохимических исследований;

б) потеря массы образцов KF-NaF-AlF₃-B₂O₃(10 мол.%) при нагреве до 800 °С незначительна и составляет менее 0,4%.

– определена растворимость Al₂O₃ в расплавленных криолитах KF-AlF₃ и KF-NaF-AlF₃ с добавками KBF₄ и B₂O₃. Обнаружено, что:

а) добавка KBF₄ до 5 мол.% в расплавы KF-AlF₃ и KF-NaF(10мас.%)-AlF₃ повышает растворимость Al₂O₃ практически в два раза по сравнению с солями, не содержащими KBF₄. Несмотря на то, что добавки KBF₄ в калиевый криолит и его смеси натриевым криолитом повышают С температуру ликвидуса, концентрационная область гомогенности растворов оксида алюминия расплавленных солях KF-NaF-AlF₃-KBF₄ с концентрацией KBF₄ до 5 мол.% и КО=1,3-1,5 значительно расширяется;

б) растворимость Al_2O_3 в расплавах KF-AlF₃ с добавками B_2O_3 до 5 мол.% сравнима с величинами растворимости в калиевом криолите без добавок оксида бора в интервале температур от точки ликвидуса до 750 °C. При температурах выше 750 °C растворимости Al_2O_3 в борсодержащих расплавленных солях понижается.

– измерена электропроводность расплавленных солей [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃) (KO=1,3) с добавками соединений бора KBF₄ и B₂O₃ в температурном интервале от точки ликвидуса до 800 °C. Найдено, что:

а) добавка KBF₄ до 10 мол.% практически не влияет на электропроводность расплавов KF-NaF-AlF₃-KBF₄ с низким KO;

б) добавка B_2O_3 существенно снижает электропроводность расплавленной соли калиевого криолита KF-AlF₃ с низким KO, что указывает на взаимодействие B_2O_3 с KF-AlF₃ с образованием оксида алюминия, который находится в расплаве в виде оксифторидных комплексов.

– измерена плотность расплавленных солей KF-AlF₃ (KO=1,3) с добавками KBF₄ в температурном интервале от точки ликвидуса до 800 °C. Добавка KBF₄ до 8 мол.% понижает плотность расплавов KF-AlF₃-KBF₄ с низким KO, что является благоприятным фактором при использовании такой расплавленной соли в качестве флюса.

2. На основании исследований фазовых равновесий систем KF-AlF₃-KBF₄, KF-NaF-AlF₃-KBF₄, KF-AlF₃-B₂O₃, KF-NaF-AlF₃-B₂O₃ и их плотности можно заключить, что расплавленные соли на основе калиевого криолита KF-AlF₃ с криолитовым отношением 1,3-1,5 могут использоваться в качестве флюсов при получении сплавов Al-B.

Кроме протекторной функции такие расплавленные соли обладают:

– более эффективной рафинирующей способностью по сравнению с известными хлоридно-фторидными флюсами вследствие хорошей растворимости в них оксида алюминия, который всегда находится на поверхности алюминия либо образуется в процессе получения сплава Al-B (в случае использования в качестве исходного сырья B₂O₃);

 невысокой плотностью по сравнению с алюминиевым расплавом, что обеспечивает быстрое разделение металлического сплава и солевой части;

 низкой температурой плавления, что способствует повышению текучести флюса и усилению его протекторной функции, при этом возможно уменьшение толщины слоя расплавленного флюса над сплавом, который затрудняет передачу тепла из-за накапливающегося в расплавленной соли шлака (оксида алюминия), являющегося хорошим теплоизолятором.

3. Составы расплавленных солей, рекомендуемые для практического использования в качестве флюсов в алюмотермии и в качестве электролитов при электролитическом получении сплавов Al-B представлены в таблице 2.3.

Таблица 2.3. Составы криолитовых расплавов с борсодержащими добавками, рекомендуемые для практического использования

Базовый состав	Концент	рация	Интервал рабочих	Растворимость	
расплавленной соли	борсодержащей		борсодержащей температур		
(мол.%)	добавки (мол.%)	remneparyp	111203	
KF(57-60)-AlF ₃ (43-40)	KBF_4	0-10	620-800°C	До 8 мас.%	
	B_2O_3	0-5	620-800°C	До 5 мас.%	
KF(40-44)-NaF(15.8- 16.0)-AlF ₃ (43-40)	KBF4	0-10	800-900°C	До 8 мас.%	

ГЛАВА 3. СТРУКТУРА БОРСОДЕРЖАЩИХ КРИОЛИТОВЫХ РАСПЛАВОВ

3.1 Современные представления о структуре расплавов, содержащих B₂O₃

Оксид бора относится к классу оксидных стекол, структурные особенности которого влияют процессы его растворения взаимодействия на И С расплавленными фторидными солями. Многочисленные исследования боратных стекол указывают на то, что основой структуры стеклообразного B₂O₃ являются планарные тригональные структурные единицы ВО₃ [22, 23, 51-55]. Расхождения известных моделей стеклообразного В2О3 касаются, в основном, способа сочленения групп ВО₃. В моделях Krogh-Moe и Warren [54] предполагается, что одним из главных структурных мотивов стеклообразного В₂О₃ являются бороксольные кольца B₃O₆. При повышении температуры концентрация бороксольных групп в расплавленном B_2O_3 значительно падает, и структура расплава представляет собой, главным образом, треугольники ВО₃, соединенные в неупорядоченную сетку (модель непрерывной сетки из ВО₃ треугольников [55]). При введении в стеклообразный оксид бора модифицирующих добавок других оксидов структура боратных стекол осложняется тем, что атомы бора могут находиться как в тройной, так и в четверной координации по кислороду. В пространственной структуре стекол, содержащей 70-90 мол.% фторидов, присутствует собственная фторидная анионная сетка, оксифторидных и оксидных групп, т.е. происходит постепенный переход:

$$[BO]_{4-6} \rightarrow [BO_X F_Y] \rightarrow [BF]_4 \rightarrow [BF]_6 \tag{3.1}$$

Соотношение количеств В(III) и В(IV) в структуре стекла, а также образование В-F связи зависит от соотношения концентраций оксидов и фторидов.

Таким образом, особенности фторсодержащих боратных стекол

заключаются в том, что, во-первых, координационное состояние бора может меняться, и, во-вторых, ионы фтора могут входить в координационное окружение бора.

Результаты Раман спектроскопических исследований расплавленной системы B_2O_3 -КF с концентраций KF более 30 мол.%, полученные авторами [56], показали, что в диапазоне высоких концентраций KF происходит дезинтеграция бороксольных колец, специфичных для расплавленного стекла B_2O_3 , на мелкие фрагменты.

Авторы [57], исследуя систему $Na_3AlF_6-Na_2B_4O_7$ методами ДТА, РФА, ИК и Раман-спектросокпическим анализом, обнаружили, что увеличение концентрации Na_3AlF_6 приводит к уменьшению количества групп [BO₄] и возможному образованию BF₄⁻ и [BO₃F]. Тем не менее, указывается на то, что присутствие в криолитовом расплаве оксифторидных боратных комплексов все еще остается дискуссионным.

Следует отметить, что вещества, в состав которых входят сложные комплексные анионы B-O-F, синтезированы и устойчивы при нормальных условиях. Кристаллический $K_3B_3O_3F_6$ был получен из расплава KF-KBF₄-B₂O₃ при температурах 390-440 °C и высокотемпературным способом [58]. Также сообщается [59] о синтезе соединения $Na_3B_3O_3F_6$ при взаимодействии $NaHF_2$ и H_3BO_3 при 100 °C.

Образование фтороксоборатных комплексов в системах KF-Na₂O-KBF₄ и FLINAK-Na₂O-KBF₄ исследовали в работе [57] с помощью вибрационной спектроскопии (Раман и ИК) в твердой и жидкой фазах. Ионы $B_2OF_6^{2-}$ и $B_3O_3F_6^{3-}$ были идентифицированы в образцах с различным молярным отношением кислорода к бору.

Основываясь на измерениях плотности, вязкости, рентгеновского и ИК анализа системы FLINAK-B₂O₃ [20], был сделан вывод, что компоненты реагируют с образованием KBO₄, $K_2B_4O_7$ и BF₃ или KBF₄. Однако KBF₄ не наблюдался в ИК спектрах. Тем не менее, в тройной системе FLINAK-KBF₄-B₂O₃ образуются два соединения в зависимости от молярного отношения бора и

кислорода (nB/nO): K₂B₂OF₆ при nB/nO≥2 и K₃B₃O₃F₆ при nB/nO≈1.

Возникает вопрос о механизме взаимодействия B_2O_3 с расплавленными натриевым и калиевым криолитами с низким КО при температурах ниже 800 °C. Возможно ли образование бороксифторидных соединений, или реакция полностью протекает с образованием метаборатов и BF₃, как это происходит, по данным [30], в натриевом криолите Na₃AlF₆ при 1000 °C

3.2 Раман-спектроскопические исследования борсодержащих криолитов [KF-AlF₃]-KBF₄(B₂O₃) и [KF-NaF-AlF₃]-KBF₄(B₂O₃)

Чтобы прояснить процессы, происходящие при химическом взаимодействии B₂O₃ и KBF₄ с расплавленным калиевым и калий-натриевым криолитами с KO=1,3-1,5, было проведено исследование этих образцов методом Раманспектроскопии.

Раман спектры отдельных соединений и образцов криолитов (KF-AlF₃ и KF-NaF-AlF₃) с добавками B_2O_3 и KBF₄ представлены на рисунках 3.1 и 3.2, соответственно.

Согласно литературным данным [60], интенсивная полоса при 545 см⁻¹ на спектре KF-AlF₃ (рисунок 3.1, линия 3) соответствует симметричным колебаниям v_1 аниона AlF₆³⁻. Полосы при 228 и 325 см⁻¹ также можно отнести к колебаниям v_6 и v_5 AlF₆³⁻. Полоса при 158 см⁻¹ принадлежит фононным колебаниям. При введении KBF₄ в KF-AlF₃ (рисунок 3.1, линия 2) на спектре проявляется характерная полоса при 773 см⁻¹, соответствующая колебаниям BF₄⁻.

Полученный спектр B_2O_3 представлен на рисунке 3.2 (линия 1). Наблюдается интенсивная полоса при 808 см⁻¹, что совпадает с литературными данными. Известно [22, 23], что Раман-спектр B_2O_3 содержит интенсивную полосу при 808 см⁻¹, положение которой соответствует симметричным колебаниям растяжения бороксольных колец B_3O_6 в слоистой стеклянной сетке (кислородное координационное число вокруг бора 3), в которой все атомы кислорода соединяются.

Рисунок 3.1 - Раман спектры образцов KBF₄ и калиевого криолита с добавками KBF₄: 1 - KBF₄; 2 - KF-AlF₃-KBF₄ (KO=1,5); 3 – KF-AlF₃ (KO=1,5)

В зарегистрированном спектре образца KF-AlF₃-B₂O₃ (рисунок 3.2, спектр 2) полоса при 808 см⁻¹ не была обнаружена, что указывает на разрушение сетчатой структуры стекла и структурные превращения бороксольных колец. Однако появляется интенсивная полоса при 790 см⁻¹. Авторы [22], исследуя стекла B₂O₃-Me₂O (Me - щелочной металл), связали уменьшение частоты колебаний от 808 см⁻¹ до 770 см⁻¹ с увеличением координационного числа кислорода вокруг бора и образованием тетраэдрических групп BO₄. В то же время введение ионов фторида в B₂O₃ приводит к исчезновению полосы 808 см⁻¹ и появлению новой полосы в области 760-780 см⁻¹ [61]. Отмечено, что наиболее вероятно, будет сформирована структурная единица, в которой замещение одного из мостикового кислорода фтором приводит к разрушению сетки боратного стекла. Таким образом, смещение полосы, характерной для B₂O₃, с 808 см⁻¹ в сторону более низких частот может быть связано как с увеличением координационного числа

Рисунок 3.2 - Raman спектры образцов B₂O₃ и калиевого криолита с добавками B₂O₃ и Al₂O₃: 1 - B₂O₃; 2 - KF-AlF₃-B₂O₃(KO=1,5); 3 - KF-AlF₃-B₂O₃-Al₂O₃ (KO=1,5)

Соответственно, можно предположить, что наблюдаемая полоса при 790 см⁻¹ в спектре KF-AlF₃-B₂O₃ (рисунок 3.2, спектр 2) может относиться к колебаниям фтороксиборатной группы [BO_xF_{4-x}], которая является искаженным тетраэдром.

Полоса при 774 см⁻¹, перекрывающаяся полосой 790 см⁻¹ в спектре KF-AlF₃-B₂O₃ (рисунок 3.2, спектр 2), может быть отнесена к полностью симметричному колебанию v_1 тетраэдрического аниона BF₄⁻ [57]. Отметим, что полоса (773 см⁻¹), относящаяся к колебаниям иона BF₄⁻, была обнаружена в образцах KBF₄ (рисунок 3.1, спектр 1) и KF-AlF₃-KBF₄ (рисунок 3.1, спектр 2).

Тем не менее, в системе KF-AlF₃-B₂O₃-Al₂O₃, в присутствии Al₂O₃, наблюдается исчезновение полосы при 774 см⁻¹ (рисунок 3.2, спектр 3).

В спектре образца калий-натриевого криолита NaF-KF-AlF₃, приведенного на рисунке 3.3 (линия 1), наблюдается интенсивный дублет полос (545 и 558 см⁻¹). Это соответствует полностью симметричному колебанию v_1 аниона AlF₆³⁻ в присутствии катионов калия и натрия. Положение полос хорошо согласуется с Раман данными, полученными для твердых криолитов K₃AlF₆ и Na₃AlF₆ [60].

Рисунок 3.3 - Раман спектры образцов калий-натриевых криолитов (KO=1,5) с добавками B₂O₃ и Al₂O₃:

1 - KF-NaF-AlF₃, 2 - KF-NaF-AlF₃-B₂O₃, 3 - KF-NaF-AlF₃-B₂O₃-Al₂O₃

В образце KF-NaF-AlF₃-B₂O₃ (рисунок 3.3, спектр 2) была получена полоса при 791 см⁻¹, относящаяся к структурной фтороксоборатной группе. Наличие полосы, соответствующей BF₄⁻ в области 770 см⁻¹, не наблюдалось.

Добавление Al_2O_3 к системе KF-NaF-AlF₃-B₂O₃ приводит к относительному увеличению интенсивности полосы 791 см⁻¹ и появлению новых полос при 595, 465, 410 и 373 см⁻¹ (рисунок 3.3, спектр 3). Повышенная интенсивность полосы 791 см⁻¹, приписываемая фтороксоборатам, может быть объяснена перекрестным

соединением групп алюминий-кислород и бор-кислород, в соответствии с данными [62].

Вибрационные полосы при 595 см⁻¹ и в диапазоне 370-470 см⁻¹ могут быть отнесены к образованию анионов фторооксоалюмината [61, 63]. Согласно работе [63], в которой изучали алюмобораты, многочисленные колебания многогранников AlO_x находятся в диапазоне между 100 и 900 см⁻¹, особенно часто такие колебания регистрировали в диапазоне 200 и 550 см⁻¹.

Таким образом, можно сделать вывод, что криолитовые системы KF-AlF₃ и KF-NaF-AlF₃ с добавками KBF₄ представляют собой ионные расплавы, состоящие из K⁺, Na⁺, BF₄⁻, AlF₆³⁻ и, возможно, AlF₄⁻. Однако, при введении B₂O₃ в криолитовые расплавы происходит взаимодействие с образованием новых продуктов - тетраборатов и фтороксоборатов.

3.3 Механизм взаимодействия B₂O₃ с криолитовыми расплавами

3.3.1 Взаимодействие с калиевым криолитом

Мы предполагаем, что первоначально при взаимодействии B_2O_3 и KF-AlF₃ происходит образование KBF₄ и Al₂O₃. Поскольку установлено [64], что Al₂O₃, растворенный в криолитах с низким KO, находится в форме фтороксоалюминатных комплексов [Al₂OF₆]²⁻, а калиевый криолит KF-AlF₃ с KO = 1,3-1,5 можно представить в виде смеси KF и KAlF₄, то эту реакцию можно выразить следующим уравнением:

$$2KF + 6KAlF_4 + B_2O_3 = 2KBF_4 + 3K_2Al_2OF_6$$
(3.2)

Реакция (3.2) происходит до тех пор, пока расплав не становится насыщенным по оксиду алюминия.

При дальнейшем добавлении оксида бора начинается взаимодействие B₂O₃ с KBF₄, который является продуктом реакции (3.2). В результате образуются

фтороксоборатные соединения K₂B₂OF₆ и K₃B₃O₃F₆. Эти реакции можно представить следующими уравнениями:

$$2 \text{ KF} + 4 \text{KBF}_4 + B_2 O_3 = 3 \text{ K}_2 B_2 OF_6 \tag{3.3}$$

$$2 \text{ KF} + \text{KBF}_4 + \text{B}_2\text{O}_3 = \text{K}_3\text{B}_3\text{O}_3\text{F}_6 \tag{3.4}$$

Термодинамическая вероятность образования этих фтороксоборатных соединений, подтвержденная экспериментальными данными, была описана словацкими учеными в работе [20].

Равновесие между различными борсодержащими ионами, устанавливающееся в расплавленной смеси, может быть представлено как:

$$3BF_4 + B_3O_3F_6^{3-} = 3B_2OF_6^{2-}$$
(3.5)

Суммарное уравнение реакции, описывающее взаимодействие B₂O₃ с расплавленным KF-AlF₃, можно представить, как:

$$2nKF + 2mKAlF_4 + nB_2O_3 \rightarrow xKBF_4 + yK_2B_2OF_6 + zK_3B_3O_3F_6 + mK_2Al_2OF_6$$
 (3.6),

где n, m и x, y, z - стехиометрические коэффициенты, 2m - число молей Al, 2n - число молей B, при этом m \ge n \ge m/3. Количество молей Al определяется растворимостью оксида алюминия в расплавленном криолите. Число молей B связано с x, y, z соотношением:

$$2n = x + 2y + 3z, (3.7)$$

то есть x, y, z зависят от концентрации B_2O_3 и температуры. Можно также сказать, что содержание различных ионов бора в расплаве так же определяется растворимостью оксида алюминия, величина которой зависит от КО и температуры.

Тот факт, что количество образующегося KBF₄ уменьшается, а количество фтороксоборатов увеличивается с увеличением содержания B₂O₃ в расплавленной смеси KF-AlF₃-B₂O₃, хорошо согласуется с данными TA системы [KF-AlF₃]-B₂O₃ (рисунок 2.10). Как было показано в главе 2, добавки KBF₄ резко увеличивают температуру ликвидуса квазибинарной системы [KF-AlF₃]-KBF₄. Такая же тенденция изменения температуры ликвидуса наблюдается при введении первых порций B₂O₃ в расплав KF-AlF₃, что косвенно свидетельствует в пользу образования КВF₄. Однако по мере того, как содержание B₂O₃ в расплаве увеличивается, концентрация частиц КВF₄ падает, что влияет на уменьшение температуры ликвидуса из-за появления легкоплавких фтороксоборатов в смеси. Действительно, соединения K₃B₃O₃F₆ и расплавленной $K_2B_2OF_6$ синтезированы, и их температура плавления равна 432 и 335 °C [65], соответственно.

Предложенный механизм химического растворения B_2O_3 в легкоплавком калиевом криолите также подтверждается тем фактом, что растворимость Al_2O_3 в расплаве KF-AlF₃-B₂O₃ возрастает в присутствии B_2O_3 , как следует из полученной фазовой диаграммы (рисунок 2.14). По нашим данным, растворимость Al_2O_3 в расплаве [KF-AlF₃]-KBF₄ в присутствии 3 мол.% KBF₄ увеличивается почти в два раза по сравнению с KF-AlF₃ (KO = 1,3-1,5) при 750 °C. Таким образом, взаимодействие оксида алюминия с расплавом KF-AlF₃-B₂O₃ приводит к образованию фтороксоборатов и фтороксоалюминатов:

$$2KF + 4KBF_4 + Al_2O_3 = 2K_2B_2OF_6 + K_2Al_2OF_6$$
(3.8)

$$6KF + 6KBF_4 + 3Al_2O_3 = 2K_3B_3O_3F_6 + 3K_2Al_2OF_6$$
(3.9)

Растворение оксида алюминия происходит до тех пор, пока не будет израсходован весь KBF₄. После этого расплав становится насыщенным по оксиду алюминия, и, как следствие, температура ликвидуса системы [KF-AlF₃-B₂O₃]-Al₂O₃ резко возрастает (рисунок 2.14).

3.3.2 Взаимодействие с калий-натриевым криолитом

Данные Раман спектроскопии и физико-химических исследований указывают на различие механизмов взаимодействия калиевого криолита и калийнатриевого криолита с B₂O₃:

- в Раман спектре закаленного расплава KF-NaF-AlF₃-B₂O₃ (рисунок 3.3) не обнаружена полоса в диапазоне 770 см⁻¹, приписываемая ионам BF_4^- ;

- добавление Al₂O₃, к расплаву KF-NaF-AlF₃-B₂O₃, приводит к резкому повышению температуры ликвидуса в отличие от системы KF-AlF₃-B₂O₃ (рисунок 2.14).

Следует отметить, что из-за того, что добавки NaF значительно увеличивают температуру ликвидуса в системе KF-NaF-AlF₃, образцы KF-NaF-AlF₃-B₂O₃ для Раман спектроскопии были получены при температуре на 50 градусов выше, чем в случае с системой KF-AlF₃-B₂O₃, что, несомненно, приводит к более активному термическому разложению щелочного тетрафторобората. Кроме того, как показали исследования [20, 27], NaBF₄ активно разлагается при более низких температурах, чем KBF₄, а B₂O₃ растворяется в расплавленных щелочных фторидах с образованием Me₂B₄O₇ (Me = Na, K). Термическое разложение NaBF₄ и, возможно, частично KBF₄, приводящее к уменьшению их концентрации в расплаве, объясняет, почему ионы BF₄⁻ не были обнаружены в образце KF-NaF-AlF₃-B₂O₃ методом Раман спектроскопии. Однако невозможно полностью исключить присутствие BF₄⁻ в расплаве, поскольку количество KF и KAlF₄ велико. Поэтому можно предположить, что взаимодействие B₂O₃ с расплавленной смесью KF-NaF-AlF₃ проходит с образованием фтороксоборатов калия по уравнению (3.6) и тетрабората натрия по следующему уравнению:

$$6NaF + 6NaAlF_4 + 8B_2O_3 = Na_2B_4O_7 + BF_3 + Na_2Al_2OF_6$$
(3.10)

Поскольку температура плавления Na₂B₄O₇ - 741 °C, то он, вероятнее всего, хорошо растворим в расплаве калий-натриевого криолита при температуре выше

800 °C и, следовательно, не оказывает существенного влияния на температуру ликвидуса в системе KF-NaF-AlF₃-B₂O₃. Заметим, что ход линии ликвидуса в этой системе подобен ликвидусу системы KF-AlF₃-B₂O₃ (рисунок 1.8).

Изменение температуры ликвидуса в системе [KF-NaF-AlF₃-B₂O₃]-Al₂O₃ можно объяснить формированием тугоплавких веществ, таких как Na₂Al₂B₂O₇ (Na₂O • B₂O₃ • Al₂O₃) с температурой плавления 1100 °C. Таким образом, наряду с реакциями (3.2, 3.3 и 3.4) в присутствии NaF в расплавленной смеси криолитов может происходить следующее взаимодействие:

$$6NaF + 2Na_2B_4O_7 + 5Al_2O_3 = Na_2Al_2OF_6 + 4Na_2Al_2B_2O_7$$
(3.11)

Соединение $Na_2Al_2B_2O_7$ плохо растворимо в расплавах криолита при температуре ниже 850 °C. Более того, многочисленные полосы в Раман спектре образца KF-NaF-AlF₃-B₂O₃-Al₂O₃ (рисунок 3.3), вероятно, относятся к колебаниям AlO_x и скрещиваемых групп AlO_x и BO_x, идентифицирующих образование сложных оксидов.

Полученные результаты опубликованы в работе [66].

Выводы по главе 3

1. Методом Раман спектроскопии исследованы образцы систем KF-AlF₃-KBF₄, KF-AlF₃-B₂O₃-Al₂O₃, KF-NaF-AlF₃-B₂O₃ и KF-NaF-AlF₃-B₂O₃-Al₂O₃.

На Раман спектре образца KF-AlF₃-KBF₄ проявляется полоса при 773 см⁻¹, характерная для колебаний симметричного тетраэдрического аниона BF_4^- , а в спектре KF-AlF₃-B₂O₃ полосу при 790 см⁻¹ можно приписать колебаниям фтороксоборатной группы [BO_xF_{4-x}].

Добавление Al_2O_3 к системе KF-NaF-AlF₃-B₂O₃ приводит к относительному увеличению интенсивности полосы 791 см⁻¹, приписываемой фтороксоборатам, и появлению новых полос в интервале частот 370-600 см⁻¹, которые могут быть отнесены к образованию анионов фторооксоалюмината.

2. На основании анализа данных Раман спектров и TA был предложен механизм взаимодействия B_2O_3 с расплавленными криолитами KF-AlF₃ и KF-NaF-AlF₃ (KO = 1,3-1,5).

Реакция протекает в две стадии:

1) с образованием KBF_4 и $K_2Al_2OF_6$;

2) с образованием фтороксоборатов $K_2B_2OF_6$ и $K_3B_3O_3F_6$ (при условии, что концентрация Al_2O_3 достигает значения растворимости).

Между борсодержащими анионами устанавливается равновесие, которое зависит от концентрации В₂O₃ и температуры.

В системе KF-NaF-AlF₃-B₂O₃, которая имеет температуру ликвидуса на 70 градусов выше по сравнению с KF-AlF₃-B₂O₃, наряду с KBF₄ и фтороксоборатами калия образуется $Na_2B_4O_7$.

3. Растворение Al_2O_3 в расплаве KF-AlF₃-B₂O₃ происходит с образованием фтороксоборатов и фтороксоалюминатов калия. Существование гомогенной области в системе KF-AlF₃-B₂O₃-Al₂O₃ при температуре до 750 °C предопределяет ее будущие промышленное применение.

Однако, при добавках Al_2O_3 в системе KF-NaF-AlF₃-B₂O₃-Al₂O₃ образуется плохо растворимое соединение Na₂Al₂B₂O₇.

ГЛАВА 4. ПОЛУЧЕНИЕ СПЛАВОВ АІ-В С ИСПОЛЬЗОВАНИЕМ ЛЕГКОПЛАВКИХ КРИОЛИТОВЫХ РАСПЛАВОВ

4.1 Состав сплавов Al-B и методы их получения (литературный обзор)

Лигатура Al-B с общим содержанием бора 2-5% используются для рафинирования электротехнического алюминия. Введение бора, способствующего повышению электропроводности алюминия, поскольку он образует нерастовримые соединения с такими элементами, как титан, ванадий, хром, цирконий, часто являющимися примесями В алюминии. Бориды осаждаются в виде шлама, тем самым способствуя увеличению проводимости алюминия [1].

Введение бора в количестве 0,09-0,1% в качестве модифицирующей добавки способствует измельчению зерна сплава, так как он адсорбируется на границе растущего зерна и замедляет скорость роста кристаллов [67]. Причем, чем более равномерно распределены бор и его интерметаллиды по объему лигатуры, тем эффективнее ее рафинирующее и модифицирующее действие [2]

Бор используется как легирующая добавка в алюминиевые сплавы для улучшения литейных и механических (твердость, жаропрочность) свойств [68].

4.1.1 Фазовая диаграмма Al-B

Растворимость бора в алюминии очень мала, поэтому лигатурные сплавы Al–B неизбежно представляют собой композитную смесь из Al–B и боридов алюминия различного стехиометрического состава (AlB₂, AlB₁₀, AlB₁₂). Фазовая диаграмма системы Al–B, построенная с помощью программы FactSage [69], приведена на рисунке 4.1. Три инконгруэнтно плавящиеся соединения – AlB₂, AlB₁₀ и AlB₁₂, имеют, соответственно, тетрагональную (α), орторомбическую (β) и гексагональную (γ) модификации.

Рисунок 4.1 - Фазовая диаграмма системы Al-B [69, 79]

Попытки определить растворимость бора в жидком алюминии были сделаны еще в 1926 году [70, 71]. Сообщалось об эвтектике при температуре 565 °С и содержании бора 35 ат.%. Позднее [72, 73] было показано, что эвтектическая ниже. Об концентрация находится гораздо ЭТОМ же свидетельствует экспериментально полученная часть фазовой диаграммы Al-B в области высоких концентраций алюминия (рисунок 4.2), которая построена по данным разных авторов [73-76]. Видно, что резуьтаты, полученные разными исследователями и методами (методом насыщения [75] и дифференциальным термическим анализом [76]), несколько расходятся. В работах [69, 77] также отмечается сложность фазовой диаграммы Al-B и недостаточность ее исследования, что затрудняет оценку свойств соединений в данной системе. Наибольшие разногласия касаются области диаграммы, богатой по алюминию.

Авторы [77] исследовали фазовую диаграмму Al–B в области составов от 0,5 до 6,4 ат.% бора калориметрическим методом. Температура эвтектики по их

68

данным составила 660 °C при содержании В 0,055 ат.%. Эти результаты хорошо согласуются с данными работ [69, 74, 78]. Температура перитектической реакции разложения AlB₂, по данным [77], составляет 914 °C. Авторы предположили, что кристаллизация AlB₂ начинается ниже температуры ликвидуса AlB₁₂.

Рисунок 4.2 - Линия ликвидуса в системе АІ–В: ●– [74], ○– [73], □– [75], △– [76]

Информация о перитектическом разложении AlB₂ при температуре 980 °C, как показано на диаграмме (рисунок 4.1), основана на измерениях методом термоанализа [74, 78].

Соединение AlB₁₀ обычно представляют, как продукт реакции при 1660 °С [72]:

$$\mathcal{K} + \beta - \mathrm{AlB}_{12} \leftrightarrow \mathrm{AlB}_{10} \tag{4.1}$$

В настоящее время расчетная фазовая диаграмма системы Al-B [69],

представленная на рисунке 4.1, не претерпела существенных изменений и попрежнему цитируется в работах, посвященных получению различных соединений A1–B [79, 80].

Рисунок 4.3 - Область фазовой диаграммы системы Al–B, богатой по алюминию [79]

Принятое значение температуры плавления элементарного бора составляет 2092 °C [69, 79, 80]. При этом по разным источникам оно составляет от 2030 до 2300 °C [69, 72]. Бор может существовать в виде комплексной (> 1100 °C) и простой (< 1100 °C) ромбоэдрической формах [81, 82].

4.1.2 Методы получения лигатурных сплавов Al-B

Основные способы получения лигатурных алюминиевых сплавов – это сплавление чистых компонентов, либо восстановление соединений легирующего компонента [1, 2]. Для получения лигатуры Al-B наибольшее распространение получил метод алюмотермического восстановления борсодержащих соединений

как прямым сплавлением компонентов [35, 83-85], так и с использованием солевых флюсов [35, 86]. Известны также другие способы: карботермическое восстановление оксида бора в электродуговой печи в присутствии алюминия, электролиз расплавленных солей, содержащих кислородные соединения бора, самораспространяющийся высокотемпературный синтез и др.

Авторы обзора [2], обобщая научно-техническую литературу, отмечают, что на сегодняшний день наиболее распространенный способ получения лигатуры Al-В – это введение KBF₄ в расплав алюминия в индукционной печи. Отмечается, что основной недостаток способа – значительное превышение предельно допустимой концентрации выделяющихся вредных газообразных веществ.

В работе Birol [85] процесс взаимодействия КВF₄ с жидким Al описывается следующими реакциями:

$$KBF_4 + Al \rightarrow KF + AlF_3 + B \tag{4.2}$$

$$2KBF_4 + 3AI \rightarrow AlB_2 + 2KAlF_4. \tag{4.3}$$

Продукты реакции (4.2) КF и AlF₃ образуют калиевый криолит KAlF₄. При восстановление KBF₄ алюминием по реакциям (4.2 и 4.3) аморфный бор может оставаться в расплаве калиевого криолита. Плотности бора, жидкого KAlF₄ и алюминия существенно различаются, поэтому важными факторами, определяющими степень усвоения бора жидким или твердым алюминием, являются характер и длительность перемешивания реакционной смеси.

Авторы [84] исследовали получение сплавов Al-B восстановлением KBF₄ алюминием при предварительном перемалывании компонентов в мельнице и последующей выдержке при различных температурах. По данным ДСК и РФА было выяснено, что взаимодействие происходит с образованием диборида алюминия при температуре 875 °C.

Исследования авторов [87] показали, что лигатуру можно получать, используя более дешевый компонент В₂О₃. Взаимодействие при сплавлении

протекает в несколько стадий. Первая – при температурах 700-850 °C:

$$B_2O_3 + 2AI = 2B + AI_2O_3 \tag{4.4}$$

При 875 °С образовавшийся В взаимодействует с избытком Al, образуя интерметаллид AlB₂:

$$2\mathbf{B} + \mathbf{A}\mathbf{I} = \mathbf{A}\mathbf{I}\mathbf{B}_2 \tag{4.5}$$

Тем не менее, при температуре свыше 1000 °С образующийся по реакции (4.4) Al_2O_3 может взаимодействовать с B_2O_3 с формированием сложных оксидов $Al_{18}B_4O_{33}$ или $Al_3B_2O_9$ [87].

Для того, чтобы удалять Al_2O_3 из реакционной зоны, B_2O_3 вводили в смеси с криолитом, что позволило повысить усвояемость бора за счет растворения Al_2O_3 в криолитовом расплаве [87]. При выдержке реакционной смеси в соотношении $KBF_4:Na_3AlF_6 = 2:1$ в течение 5 мин при 800-850 °C была достигнута степень извлечения бора более 90%.

Наиболее критичный параметр процесса прямого сплавления Al и B_2O_3 – это растворимость бора в алюминиевой матрице. Авторам [88] удалось получить 2,14 мас.% В в Al. При этом отмечается, что наиболее важными параметрами процесса являются тип сплава (тип матрицы) и время выдержки, а температура выдержки и скорость охлаждения оказывают менее существенное влияние на количество B в лигатуре Al-B.

Необходимо отметить, что лабораторные исследования прямого алюмотермического восстановления борсодержащих добавок алюминием не привели к эффективным технологическим решениям. Прямое замешивание борсодержащих соединений в расплавленный Al при высоких температурах имеет ряд недостатков, включая низкий коэффициент извлечения, агломерацию боридных частиц в алюминии, образование сложных оксидов, загрязняющих реакционную смесь и т.д.
Использование солевых флюсов при получении лигатур Al-B по реакции восстановления борсодержащих соединений жидким алюминием позволяет значительно снизить температуру процесса и, соответственно, потери летучего борсодержащего компонента, повысить степень извлечения бора.

В качестве солевого флюса используют смеси галогенидных солей щелочных и щелочноземельных металлов. Такие смеси удобны потому, что на их основе можно получать композиции С регулируемыми плотностью И температурой Наиболее плавления. часто применяются такие солевые композиции как NaCl – KCl, KCl – MgCl₂, NaF – AlF₃ [35].

В качестве покровных флюсов, которые создают химически пассивный защитный слой, предохраняющий алюминиевый расплав от окисления, как правило, применяется эвтектика NaCl – KCl, которая плавится при температуре 665 °C. Низкая температура плавления повышает текучесть флюса [89].

Плотность расплава флюса должна быть значительно меньше плотности алюминиевых сплавов, чтобы слой жидкого флюса мог располагаться на поверхности алюминия, защищая его от воздействия печных газов и воздуха [90]. Плотность жидкого флюса KCl-NaCl составляет 1.5-1.6 г/см³ при 700-800 °C, что значительно меньше плотности жидкого алюминия при таких же температурах.

Рафинирующее действие флюсов состоит в адсорбции и растворении загрязнений или в химическом взаимодействии флюса с примесями. Для лучшего выделения из расплавленного металла оксида алюминия, который всегда покрывает поверхность алюминия или образуется в результате взаимодействия алюминия с борсодержащими компонентами, флюс должен растворять оксид или хорошо смачивать. Фториды щелочных металлов способны растворять оксид или хорошо смачивать в оксидные пленки. Это приводит к повышению смачиваемости, что способствует отделению оксидных включений от расплава и металлического алюминия от шлака. Фториды щелочных металлов действуют как поверхностно-активные вещества, снижающие поверхностное натяжение между флюсом и металлом, а также между флюсом и оксидами. Хлориды, также, как и AlF₃ и MgF₂, проявляют это свойство в значительно меньшей степени. Флюсы могут содержать такие фториды, как: криолит (Na₃AlF₆); фторид кальция (CaF₂); силикофторид натрия (Na₂SiF₆). Их содержание во флюсах может достигать 20 % [89]. Однако фторидные соли щелочных металлов имеют высокую температуру плавления. Это приводит к утолщению пленки жидкого флюса, что ограничивает его применение. Традиционный покровный хлоридно-фторидный флюс содержит около 47,5 % NaCl, 47,5 % KCl и 5 % фторидной соли [89].

В работе [91] изучено действие одного из наиболее распространенных составов флюсов, включающего 39% NaCl, 50% KCl, 6,6% Na₃AlF₆, 4,4% CaF₂. Авторы указывают, что основная рафинирующая роль во флюсе принадлежит криолиту NaF-AlF₃, что объясняется хорошей растворимостью в нем Al₂O₃ [92]. Однако в традиционных технологиях получения алюминиевых сплавов флюсы с небольшим содержанием криолита (6-10%) малоэффективны, поскольку при 720-800 °C в них растворяется всего 0.3-0.5 % Al₂O₃ [91]. Для производства алюминиевых сплавов и лигатур наиболее широкое применение получил флюс, содержащий 15-23% Na₃AlF₆, 40-47% KCl и 30-38% NaCl.

В последнее время много работ посвящено оптимизации параметров процесса получения лигатуры Al–B при взаимодействии жидкого алюминия с расплавом KCl–KBF₄ [83-86, 93].

Диаграмма плавкости системы KCl–KBF₄ относится к типу эвтектической с ограниченной взаимной растворимостью компонентов в твердом состоянии. Эвтектическая точка диаграммы соответствует 483 °C и содержанию (мас.%) (18)KCl–(82)KBF₄. Предельная растворимость KCl в KBF₄ составляет 88 мас.%, а KBF₄ в KCl – не выше 40 мас.%. Преимуществом данного способа является низкая рабочая температура.

В результате серии экспериментов по взаимодействию алюминия с KCl– KBF₄, авторами [35] установлено, что при замешивании в жидкий KBF₄ при температуре 550 °C порошка алюминия происходит энергичная восстановительная реакция, соль нагревается до красного свечения, и бурно выделяется белый дым (AlF₃). При нагреве смеси солей KCl–KBF₄ до температуры 950 °C и выдержке при этой же температуре образования характерного белого дыма не наблюдается. Только при контакте с алюминием выделяется дым, причем интенсивнее при повышении температуры расплава.

Недостатком использования KBF_4 в качестве борсодержащего сырья при получении сплавов Al-B является сложность управления алюмотермической реакцией, приводящей при локальных перегревах к высоким потерям бора в виде побочной реакции разложения KBF_4 до KF и BF₃, а также необходимость переработки больших объемов отработанного флюса. Несмотря на это, на сегодняшний день алюмотермическая технология с применением солевых флюсов представляется наиболее энергоэффективной, поскольку не требует высоких энергозатрат на проведение электрохимических реакций восстановления бора из его соединений. Тем не менее, для масштабного получения лигатурных сплавов Al-B с воспроизводимыми характеристиками (содержание и распределение бора) необходим тщательный подбор оптимальных технологических режимов процесса.

Следует заметить, что способ получения лигатуры электролизом расплава, содержащего B_2O_3 , имеет неоспоримые преимущества: используется значительно более дешевый B_2O_3 , исключаются потери алюминия и легирующего компонента, а также, создаются условия для получения лигатур с меньшей концентрацией неметаллических включений и водорода [1]. Однако, разработки перспективного метода получения сплавов Al-B восстановлением B_2O_3 непосредственно в алюминиевом электролизере пока не увенчались успехом.

Авторы [67] проводили лабораторные исследования получения сплавов Al-В в условиях электролиза Эру-Холла в традиционном электролите с добавками B₂O₃ при 970 °C. Был получен сплав с максимальным содержанием бора 0,1 %. Тем не менее, отмечается, что добавки B₂O₃ приводят к заметному изменению смачиваемости катода.

В работах [1, 68] описано проведение испытаний в промышленных алюминиевых электролизерах. При введении B₂O₃ в электролизер была получена лигатура с содержанием бора 0,08-0,1%, при этом электролиз протекал стабильно. Однако, при попытках получить более насыщенную по бору лигатуру (0,15-0,18 %) процесс электролиза нарушался (повышались напряжение на ванне и температура).

Состав солевого расплава и его физико-химические характеристики могут существенно изменить условия получения сплава Al-B.

В качестве альтернативных солевых флюсов могут быть использованы фторидные расплавленные соли KF-AlF₃, KF-NaF-AlF₃ с отношением мольных концентраций $x(KF)/x(AlF_3)$ и $[x(KF)+x(NaF)]/xAlF_3$, изменяющемся в интервале 1,3-1,5. Расплавленные смеси KF-AlF₃ с мольным (криолитовым) отношением (KO) 1,3 имеют температуру плавления 617 °C, что ниже, чем температура плавления наиболее распространенного базового состава флюсов - эвтектики KCl-NaCl (665 °C), и, следовательно, положительно влияет на покровные свойства.

Неоспоримым преимуществом расплавленной соли KF-AlF₃ является то, что она - хороший растворитель оксида алюминия. Растворимость Al₂O₃ в расплаве KF-AlF₃ составляет 4.7-6.9 мас.% в интервале температур 700-800 °C [8]. Таким образом, расплавы на основе калиевого криолита могут быть использованы в качестве среды-электролита для проведения электролитического восстановления борсодержащих добавок.

Влияние добавок KBF₄ и B₂O₃ на физико-химические свойства фторидных расплавленных солей KF-AlF₃, KF-NaF-AlF₃ было исследовано в главах 1 – 3, что позволило выбрать составы, подходящие для получения сплавов Al-B как алюмотермическим, так и электролитическим методами.

Таким образом, были поставлены задачи:

– провести лабораторные испытания и выяснить оптимальные параметры получения лигатурных сплавов Al-B методом алюмотермического восстановления борсодержащих компонентов KBF₄ и B₂O₃ с использованием легкоплавких расплавленных солевых флюсов KF-AlF₃ и KF-NaF-AlF₃;

 провести лабораторные испытания и определить принципиальную возможность получения сплавов Al-B электролитическим восстановлением борсодержащего компонента B₂O₃ с использованием электролитов на основе калиевого криолита. 4.2 Исследование процесса получения сплавов Al-B методом алюмотермического восстановления KBF₄ и B₂O₃ в среде расплавов KF-AlF₃ и KF-NaF-AlF₃

4.2.1. Выбор состава флюсов

Исследования физико-химических свойств солей KF-AlF₃ и KF-NaF-AlF₃ с KO=1,3-1,5, содержащих KBF₄ и B₂O₃ [40, 41] показали, что добавка KBF₄ значительно повышает температуру ликвидуса расплавов калиевого и калийнатриевого криолитов. Так, температура ликвидуса KF-AlF₃ (KO=1,3) с добавкой 5 и 10 мол.% KBF₄ составляет 663 и 764 °C, соответственно. Тем не менее, растворимость Al₂O₃ в расплавах KF-AlF₃ и KF-NaF-AlF₃ практически в 2 раза выше, чем в этих же расплавах без добавок KBF₄ [41].

Также было выяснено [94, 95], что поведение B_2O_3 в расплавах криолитов имеет свои особенности. Температура ликвидуса квазибинарной фазовой диаграммы [KF-AlF₃]-B₂O₃ с KO=1,3 и содержанием B_2O_3 до 10 мол.% не превышает 660 °C. При этом растворимость Al₂O₃ в этой системе достаточно высокая и составляет около 4,0 мол.% при 750 °C.

Таким образом, для исследования процесса алюмотермического получения лигатуры Al-B были выбраны солевые флюсы KF-AlF₃ с KO=1,3 и 1,5 и KF-NaF-AlF₃ с KO=1,5. В качестве борсодержащего компонента испытывали соединения KBF₄ и B₂O₃. Кроме того, для сравнительного анализа действия флюсов на основе калиевого криолита были проведены при таких же экспериментальных условиях опыты с использованием традиционных флюсов KCl–NaCl–KF. Основное преимущество хлоридно-фторидных флюсов заключается в том, что их можно использовать при высоких температурах (900-950 °C) вследствие невысокой летучести. Состав исследуемых в качестве флюсов криолитовых смесей приведен в Таблице 4.1. Там же указана рабочая температура процесса, которую обеспечивают флюсы выбранного состава в присутствии компонентов KBF₄ или B_2O_3 .

	Coorrep di mooo		Борсодержащая	
N⁰		КО	добавка,	<i>Т</i> _{раб} , °С
	(Mac. %)		(мас. %)	
1	(48)KF–(52)AlF ₃	1.3	(1–6) KBF ₄	710
2	(51)KF–(49)AlF ₃	1.5	$(1-10) B_2 O_3$	800
3	(16)NaF-(44)KF-(40)AlF ₃	1.5	(0.5–5) KBF ₄	850
4	(40)KCl-(40)NaCl-(20)KF	-	(0.5–5) KBF ₄	900-950

Таблица 4.1 Состав флюсов и борсодержащих добавок

4.2.2. Методика проведения алюмотермического восстановления

Алюмотермический синтез проводили в процессе плавления алюминия под солевым флюсом с последующим порционным введение KBF₄ или B₂O₃ в реакционную зону.

Для отработки методики получения сплава Al-B были проведены предварительные эксперименты с использованием флюса, состоящего из эквимольной смеси KCl-KF, целью которых было выяснение оптимальных параметров синтеза (способа загрузки компонентов, перемешивания, длительности) в лабораторных условиях [96, 97].

Были рассмотрены два способа смешения и загрузки компонентов:

Способ 1 - Солевой флюс, борсодержащий компонент и алюминий смешивали в тигле при комнатной температуре, затем смесь плавили при заданной температуре. После плавления начинали перемешивание.

Способ 2 - Солевой флюс и алюминий плавили, затем начинали перемешивание. Борсодержащую добавку вводили порционно.

Влияние способа смешения и загрузки компонентов и длительности синтеза на содержание бора в полученном алюминии при разных способах смешивания компонентов показано на рисунках 4.4 и 4.5. Наибольшее содержание бора достигается в сплавах Al-B, полученных в результате порционного введения KBF₄ в солевой флюс.

Рисунок 4.4 – Соотношение между количеством вводимого в солевой расплав бора и полученным в сплаве Аl-B: ○– Способ 1, х– Способ 2.

Рисунок 4.5 – Влияние длительности синтеза: ○ – Способ 1, х – Способ 2.

Как следует из рисунка 4.5, длительность синтеза 30-40 минут при температурах 700 – 850 °С достаточна для получения максимального насыщения алюминия по бору.

Скорость перемешивания не должна превышать 700 об/мин, так как энергичное перемешивание расплава в лабораторной ячейке приводит к снижению содержания бора в сплавах вследствие окисления бора и разбрызгивания расплава. Однако, снижение скорости перемешивания ниже 100 об/мин способствует неравномерному распределению бора в сплавах.

Таким образом, были выбраны режимы получения сплава Al-B, которые сохранялись во всех экспериментах: способ - порционная загрузка компонента в расплавленный алюминий, находящийся под флюсом, скорость перемешивания расплавленной смеси – 400 об/мин, длительность синтеза – 30 мин.

Схема экспериментальной ячейки для алюмотермического получения сплавов Al-B приведена на рисунке 4.6

Рисунок 4.6 – Лабораторная ячейка для алюмотермического восстановления

Солевой флюс, массой 80 г, загружали в контейнер (стеклоуглерод), помещали в печь и нагревали до рабочей температуры. Алюминий (гранулы)

загружали небольшими порциями (общая масса алюминия составляла от 5 до 20 г.). В тигель с расплавленными флюсом и алюминием вводили рассчитанное количество борсодержащей добавки (КВF₄, B₂O₃) и опускали графитовую мешалку. После эксперимента жидкий флюс и металлический сплав сливали в массивную стальную изложницу. После охлаждения из королька сплава изготавливали шлиф для определения содержания и распределения бора методом сканирующей электронной микроскопии (SEM) и энергодисперсионного микрорентгенофазового (EDX) анализа. Для этого использовали рентгенофазовый микрорентгено-структурный анализатор DMAX-2500 (Rigaku, Japan) и И сканирующий электронный микроскоп JMS-5900LV с микроанализатором INCA Energy 200 и энергодисперсионным микроанализатором INCA Wave 250 (JEOL, UK). Элементный анализ сплавов Al-B осуществляли спектрально-эмиссионным методом с индуктивно-связанной плазмой (ICP) при помощи оптического эмиссионного спектрометра iCAP 6300 Duo «Thermoscientific».

4.2.3 Результаты алюмотермического получения сплава Al-B

Было проведено 4 серии экспериментов по алюмотермическому восстановлению бора из KBF_4 и B_2O_3 с использованием солевых флюсов на основе калиевого, смеси калиевого и натриевого криолитов и хлориднофторидных. Количество загружаемых борсодержащих добавок в расчете на элементарный бор и температура проведения эксперимента для каждой серии опытов указаны в таблице 4.2. Там же приведены результаты химического анализа и расчет степени извлечения бора из его соединений.

Соотношение между количеством вводимого в солевой расплав бора и полученным в сплаве Al-B для всех проведенных экспериментов показано на рисунке 4.7. Максимальное количество бора (1,5%) в сплаве Al-B было получено при восстановлении KBF₄ (3% B) алюминием в среде KF-AlF₃ (KO=1,3) при 710 °C.

Таблица 4.2. Степень извлечения бора при алюмотермическом восстановлении с использованием флюсов на основе калиевого и смеси калиевого и натриевого криолитов

Серия №	Состав флюса (мас.%)	Добавка	№ опыта	<i>Т</i> , °С	задано В в Al, мас.%	В в Al (ICP), мас. %	Степень извлечения В, %
			1		0,16	0,12	75
			2		0,48	0,22	45
1	$K\Gamma - AI\Gamma_3$ VO - 1.2	KBF_4	3	710	0,82	0,23	28
	KO-1,5		4		1,5	1,07	71
			5		3,0	1,50	50
	$\begin{array}{c c} & \text{KF-AlF}_3 \\ 2 & \text{KO-1.5} \end{array}$	B ₂ O ₃	6	800	0,5	0,13	26
2			7		1,5	0,11	7,3
	KO-1,5		8		3,0	0,13	4,3
	NoE VE A1E		9		1,0	0,70	70
3	VO-15	KBF_4	10	850	1,5	0,77	51
	KO=1,5		11		3,0	0,80	27
			12	000	2,6	0,58	22,3
4	KC1 NoC1 KE	KBE	13	300	4,4	0,69	15,7
	KUTINAUT-KF	ΝΟΓ4	14	050	2,6	0,6	23,1
			15	930	4,4	0,72	16,4

Степень извлечения бора из его соединений в зависимости от количества задаваемого компонента при различных температурах приведена на рисунке 4.8.

В условиях лабораторных опытов при механическом перемешивании расплава степень извлечения бора не превышала 75%. Наилучшие показатели по извлечению В из KBF₄ были получены при температуре 710 °C во флюсе KF-AlF₃ (KO=1,3). Причем, чем меньше масса добавки, тем выше степень извлечения бора. При добавке 1 мас.% В (в виде KBF₄) степень извлечения составила около 70% как при 710 °C, так и при 850 °C, и при добавлении 3 мас.% В степень извлечения упала до 50% при 710 °C и до 28% при 850 °C.

Рисунок 4.7 – Соотношение между количеством вводимого в солевой расплав бора и полученным в сплаве Al-B: 1- KF–AlF₃–KBF₄ (KO=1,3); 2 - KF–AlF₃–B₂O₃ (KO=1,5); 3 - NaF-KF-AlF₃–KBF₄ (KO=1,5); 4- KCl–NaCl–KF–KBF₄

1 - KF–AlF₃–KBF₄ (KO=1,3); 2 - KF–AlF₃–B₂O₃ (KO=1,5); 3 - NaF-KF-AlF₃–KBF₄ (KO=1,5); 4 - KCl–NaCl–KF–KBF₄

Показатели, полученные в опытах с использованием KBF₄ и хлориднофторидного флюса при 900-950 °C, уступают данным, полученным в опытах как с калиевым, так и с калий-натриевым криолитами. Причем, повышение температуры синтеза на 50 градусов (с 900 до 950 °C) не привело к существенным изменениям. Содержание В в сплаве Al-B составило около 0,6 мас.% (при добавке 2,6 мас.% бора) и 0,7 мас.% (при добавке бора 4,4 мас.%). Степень извлечения бора не превысила 23% (при 900 °C).

Из полученных результатов, представленных на рисунках 4.7 и 4.8 и в таблице 4.2, следует, что наименьшее количество бора в алюминии с минимальной степенью извлечения было получено в опытах с В₂O₃.

4.2.4 Структура сплавов Al-B, полученных алюмотермическим методом

Микрофотографии сплавов № 5 и 11 (Таблица 4.2), полученных восстановлением KBF₄ под флюсами KF-AlF₃ (KO=1,3) при 710 °C и NaF-KF-AlF₃ (KO=1,5) при 850 °C, и сплава № 8 (Таблица 4.2), полученного восстановлением B_2O_3 в среде KF-AlF₃ (KO=1,5) при 800 °C, представлены на рисунках 4.9-4.12. Элементный состав (в атомных процентах), определенный в разных точках поверхности, сведены в таблицы 4.3-4.5.

Во всех образцах были определены, кроме основных компонентов Al и B, примеси Fe, Si, O и C. B качестве примера, на рисунке 4.10 представлены карты распределения основных и примесных компонентов для образца №5. Присутствие железа, кремния и графита является результатом подготовки шлифов. Кроме того, наличие графита может быть связано с применением в процессе синтеза графитовой мешалки.

На рисунке 4.9а и 4.9б представлены микрофотографии образца №5, полученного восстановлением KBF₄, при различном увеличении. Содержание элементов в различных точках приведён в таблице 4.3. На светлых участках был обнаружен Al с небольшим количеством кислорода. Бор находится на участках более темного, серо-черного и черного цвета. Из рисунков 4.9, 4.10 и таблицы 4.3

следует, что темные участки преимущественно состоят из AlB₂, (атомное отношение B/Al близко к 2).

Рисунок 4.9 – Микрофотография образца сплава Al-B №5, полученного алюмотермическим восстановлением KBF₄ под флюсом KF-AlF₃ (KO=1,3) при температуре 710 °C

Подобная картина наблюдается и для образца № 11, полученного восстановлением KBF₄ при 850 °C с использованием флюса, состоящего из смеси калий-натриевого криолитов. Зафиксировано небольшое количество кислорода. На темных участках отношение B/Al точно соответствует интерметаллиду AlB₂.

Тем не менее, суммарное количество В, определенное на одинаковой площади образцов № 5 и 11 (рисунки 4.9, 4.10 и 4.11), составляет 10,0 и 2,2 мас.%, соответственно. Следует отметить, что такая же тенденция проявляется и по результатам общего элементного анализа (таблица 4.2): содержание В в Al больше в образцах сплавов, полученных при 710 °C в расплаве KF-AlF₃ (KO=1,3).

Рисунок 4.10 – Микрофотография (А) и карты распределения элементов (Б, В, Г, Д, Е) в образце сплава Al-B №5, полученного алюмотермическим восстановлением KBF₄ под флюсом KF-AlF₃ (KO=1,3) при 710 °C

	Таблица	ı 4.3.	Содержание	элементов	В	проб	е обра	азца	сплава	Al-B	№5,
получ	енного	алюмо	отермическим	восстанов	лен	нием	KBF ₄	под	флюсов	мKF	-AlF ₃
(КО=	1,3) при	710 °C									

Спектр	Fe	В	0	Al	B/Al	O/Al
1	-	59,94	0,94	39,12	1,53	0,02
2	-	53,94	10,76	35,30	1,53	0,30
3	0,76	52,77	2,67	44,56	1,18	0,06
4	-	-	2,65	97,35	-	0,03
5	-	32,90	1,90	65,20	0,50	0,03

Рисунок 4.11 – Микрофотография (А) и карта распределения бора (Б) в образце сплава Al-B №11, полученного алюмотермическим восстановлением KBF₄ под флюсом KF-NaF-AlF₃ (KO=1,5) при 850 °C

Таблица 4.4. Содержание элементов в пробе образца сплава Al-B №11, полученного алюмотермическим восстановлением KBF₄ под флюсом KF-NaF-AlF₃ (KO=1,5) при 850 °C

Спектр	Fe	В	0	Al	B/Al	O/Al
1	-	66,59	0,72	32,57	2,04	0,02
2	-	66,72	0,46	32,55	2,05	0,01
3	1,0	-	43,7	55,30	-	0,80
4	-	-	52,2	47,8	-	1,10
5	-	-	4,24	79,09	-	0,05
6	-	-	2,41	97,07	-	0,02

Распределение В в алюминиевой матрице образцов №5 и 11 представлены на рисунках 4.10г и 4.116. На фоне равномерного распределения бора, характерного для твёрдого раствора Al-B, наблюдаются более интенсивно окрашенные зоны, соответствующие интерметаллиду AlB₂. Следует отметить, что соединение AlB₁₂ обнаружено не было.

Результаты SEM для образца, полученного с использованием B₂O₃ в качестве борсодержащей добавки (рисунок 4.12), свидетельствуют об отсутствии интерметаллида AlB₂.

Рисунок 4.12 – Микрофотография и карты распределения элементов образца в образце сплава Al-B №8, полученного алюмотермическим восстановлением B₂O₃ под флюсом KF-AlF₃ (KO=1,5) при 800 °C

Таблица 4.5. содержание элементов в пробе образца сплава Al-B №8, полученного алюмотермическим восстановлением B₂O₃ под флюсом KF-AlF₃ (KO=1,5) при 800 °C

Спектр	Fe	0	Al	O/Al
1	-	46.7	53.3	0.88
2	0.34	48.9	51.1	0.97
3	12.3	4.7	83.0	0.06
4	-	4.9	95.1	0.05

Однако, элементный химический анализ показал наличие в среднем 0,13 мас.% В в Al, что соответствует составу истинного раствора по фазовой диаграмме Al-B при температуре 800 °C (рисунок 4.2). На рисунке 4.12б видно равномерное распределение бора в матрице алюминия. Тем не менее, для этого образца характерно высокое содержание кислорода (рисунок 4.12в), что можно объяснить наличием, в большом количестве Al_2O_3 . Оксид алюминия может образовываться в результате нескольких реакций. Во-первых, при взаимодействии жидкого алюминия с оксидом бора (реакция 4.4). Во-вторых, оксид бора взаимодействует с калиевым криолитом по реакции 3.2. В условиях лабораторных экспериментов оксид алюминия не успевает покидать зону реакции и растворяться во флюсе, а также препятствует дальнейшему образованию интерметаллидов. Возможно, что

при изменении способа перемешивания жидкого алюминия (например, магнито-гидродинамическим перемешиванием) были бы получены более обогащенные по бору сплавы.

Микрофотографии шлифа образца №14, полученного в среде хлориднофторидного флюса KCl–NaCl–KF при температуре 950 °C показаны на рисунке 4.13. Элементный анализ в разных точках приведён в таблице 4.6.

Рисунок 4.13 – Микрофотография образца сплава Al-B №14, полученного алюмотермическим восстановлением KBF₄ под флюсом KCl–NaCl–KF при 950 °C

Таблица 4.6. содержание элементов в пробе образца сплава Al-B №14, полученного алюмотермическим восстановлением KBF₄ под флюсом KCl–NaCl– KF при 950 °C

Спектр	Fe	0	Al	В	Si	С	B/Al	O/Al
1	0,1	4,1	48,9	-	0,4	46,5	-	0,84
2	0,1	3,2	10,8	47,1	1,1	37,7	4,36	0,34
3	0,1	1,8	15,9	35,1	1,3	45,8	2,21	0,11
4	-	2,6	25,8	33,6	0,1	37,9	1,30	0,10

Следует отметить, что общий анализ содержания элементов на выделенном участке рисунка 4.13 не обнаружил присутствие бора. Однако в точках 2, 3 и 4

концентрация В составляет 33-47 ат.%, а соотношение B/Al лежит в интервале 1,3-4,3, что свидетельствует о наличии интерметаллидов. В целом, химический анализ содержания В в полученном сплаве составил всего 0,6 мас.%, что явилось наименьшим значением во всех проведенных экспериментах по алюмотермическому восстановлению KBF₄.

Таким образом, наилучшие результаты в лабораторных ячейках были получены при алюмотермическом восстановлении KBF₄ во флюсе (KAlF₄ KO=1,3) при 710 °C. Следует отметить, что сравнимые результаты были также получены в экспериментах с флюсом KF-NaF-AlF₃ (KO=1,5) при 850 °C при введении небольших добавок В. Однако при увеличении концентрации задаваемого бора, степень его извлечения существенно снижается, что может быть объяснено не только активным термическим разложением KBF₄ при более высокой температуре, но и существенным разложением NaBF₄, термическая устойчивость которого значительно ниже, чем у KBF₄ [20].

Влияние температуры на количество получаемого В в алюминии на практике сложно однозначно определить. С одной стороны, повышение температуры сказывается на увеличении растворимости бора в алюминии, а также на образовании более богатых по бору интерметаллидных соединений. Например, образование AlB₁₂ начинается при температуре 975 °C [35]. С другой стороны, при таких температурах наблюдается интенсивное термическое разложение KBF₄ и образование летучего BF₃. Поэтому на практике, необходимо подбирать технологические условия (температуру, способ загрузки борсодержащего компонента, интенсивность перемешивания), при которых извлечение бора будет максимально высоким.

Полученные результаты опубликованы [96-99]. Способ получения лигатурного сплава Al-B с использованием солевых флюсов на основе калиевого криолита отражен в патенте [100].

90

Выводы по разделу 4.2

1. Отработана методика получения сплава Al-B алюмотермическим способом в лабораторных ячейках. Выбраны оптимальные режимы: порционная загрузка борсодержащего компонента в расплавленный алюминий, находящийся под флюсом; скорость перемешивания расплавленного алюминия – 400 об/мин; длительность синтеза – 30 мин.

2. В лабораторном реакторе были получены лигатуры Al-B методом алюмотермического восстановления KBF₄ с использованием фторидных флюсов KF-AlF₃ с KO=1,3 и KF-NaF-AlF₃ с KO=1,5 при температуре 710 и 850 °C и хлоридно-фторидных KCl–NaCl–KF при температуре 900-950 °C. Максимальное количество бора (1,5%) в сплаве Al-B было получено при восстановлении KBF₄ (3% B) алюминием в среде KF-AlF₃ (KO=1,3) при 710 °C.

3. Наилучшие показатели по извлечению В из KBF₄ были получены при температуре 710 °C во флюсе KF-AlF₃ (KO=1,3). Причем, чем меньше масса добавки, тем выше степень извлечения бора. При добавке 1 мас.% В (в виде KBF₄) степень извлечения составила около 70% как при 710 °C, так и при 850 °C. При дальнейшем добавлении бора (до 3 мас.%) степень его извлечения из KBF₄ уменьшается.

4. Несмотря на то, что теоретически флюсы NaF-KF-AlF₃ (KO=1,5) обеспечивают температуру синтеза сплава Al-B с высоким содержанием бора при 800-900 °C, на практике происходит существенное термическое разложение KBF₄ и особенно NaBF₄. Поэтому использование солей натрия в качестве компонента флюса не рекомендуется.

5. Сплавы Al-B полученные восстановлением KBF₄ в среде фторидых флюсов KF-AlF₃ с KO=1,3 и KF-NaF-AlF₃ с KO=1,5 при температуре 710 и 850 °C представляют собой твёрдые растворы B в Al, содержащие интерметаллид AlB₂. Интерметаллиды с высоким содержанием бора обнаружены не были.

6. При использовании B₂O₃ в качестве борсодержащего сырья при алюмотермическом синтезе в среде KF-AlF₃ с KO=1,5 при температуре 800 °C

были получены сплавы с низким содержанием бора (0,11-0,13 мас.%), которые представляют собой твёрдый раствор Al-B. Интерметаллиды в этих образцах обнаружены не были.

7. Метод получения сплава Al-B с высоким содержанием B путем восстановления B_2O_3 жидким алюминием под солевым флюсом KF-AlF₃ при 800 °C не может быть использован вследствие образования зашламляющего сплав оксида алюминия, который является продуктом взаимодействия B_2O_3 как с жидким Al, так и с расплавом KF-AlF₃.

8. Для получения лигатурных сплавов Al-B в промышленных масштабах рекомендуется способ алюмотермического восстановления борсодержащего компонента KBF₄ под слоем солевого флюса на основе калиевого криолита (KF-AlF₃ или KF-NaF-AlF₃ с KO=1,3-1,5 при температурах 700-800 °C.

4.3 Электролитическое получение сплава Al-B в расплаве KF-AlF₃-B₂O₃

В главах 2 и 3 было показано, что B_2O_3 растворяется в ненасыщенном по оксиду алюминия расплаве калиевого криолита с образованием KBF₄ и Al₂O₃ (реакция 3.2). При этом растворимость Al₂O₃ в расплавах KF-AlF₃-B₂O₃(5 мол.%) с KO=1,3 практически такая же, как в расплавах без B_2O_3 в температурном интервале 650-750 °C (рисунок 2.14). Поэтому была поставлена задача провести электролиз расплава системы KF-AlF₃-B₂O₃ с KO=1,3 при 700 °C с целью получения сплава Al-B.

4.3.1 Методика проведения электролиза

Схема ячейки для проведения электролиза показана на рисунке 4.14. В графитовый тигель, объёмом 125 см³, загружали электролит KF-AlF₃ с KO=1,3-1,5, массой около 140 г. Графитовый тигель в охранном алундовом сосуде помещали в печь и нагревали до рабочей температуры (700 или 800 °C, в зависимости от состава электролита).

Рисунок 4.14 – Схема ячейки для электролитического получения сплава Al-B

После расплавления электролита в тигель загружали гранулированный алюминий (≈30 г). В течении опыта поддерживали высоту расплава в тигле на уровне 6,5 см. В качестве анода использовали цилиндрический графитовый стержень диаметром 1,2 см. Катодом служил расплавленный алюминий на дне графитового тигля, в стенку которого был вмонтирован токоподвод (нихром).

Перед началом электролиза в электролит вводили добавку B_2O_3 из расчета соотношения B/Al=3%. Электролиз расплава KF-AlF₃-B₂O₃ проводили при температуре 700 °C и плотности тока 0,3 A/см². В течении электролиза регистрировали напряжение на ячейке. Постоянное значение напряжения свидетельствует о стабильном течении процесса. Увеличение напряжения указывает на обеднение расплава по кислороду, в этот момент времени вводили следующие добавки, состоящие из смеси B_2O_3 и Al₂O₃ (B/Al=1/1). В течении

эксперимента отбирали пробы электролита для проведения элементного анализа. Концентрации Al и K определяли методом ICP с помощью оптического эмиссионного спектрометра iCAP 6300 Duo «Thermoscientific», а содержание кислорода (O) - анализатором кислорода LECO ONH836.

После проведения электролиза из полученного сплава изготавливали шлифы, микроструктуру которых анализировали с помощью анализатора DMAX-2500 (Rigaku, Japan) и сканирующий электронный микроскоп JSM-5900LV с микроанализатором INCA Energy 250 и энергодисперсионным микроанализатором INCA Wave 500 (JEOL, Япония). Элементный анализ сплавов Al-B осуществляли спектрально-эмиссионным методом с индуктивно-связанной плазмой (ICP) при помощи оптического эмиссионного спектрометра iCAP 6300 Duo (Thermo Scientific, США).

4.3.2 Результаты электролитического получения сплава Al-B

Изменение напряжения в процессе электролиза расплава KF-AlF₃-B₂O₃ с KO=1,3 при температуре 700 °C в графическом виде изображено на рисунке 4.15. На этом же рисунке точками отмечено время отбора проб электролита для проведения элементного анализа, а также изменение концентрации (O), определённой в пробах электролита. Следует отметить, что точки 5, 7, 9 и 11 соответствуют времени добавок смеси оксидов алюминия и бора в электролит. В этих точках указана концентрация кислорода, рассчитанная по массе внесенных оксидов. Концентрации элементов в пробах электролита, определенные химическим анализом, приведены в таблице 4.7.

Пробы 1 и 2 электролита KF-AlF₃, не содержащего B_2O_3 , были взяты перед началом электролиза до и после введения в электролит металлического алюминия. При этом количество кислорода в электролите практически не изменилось. Таким образом, начальный электролит содержал 0,6 мас.% кислорода (O), что соответствует 1,25 мас.% Al₂O₃ (рисунок 4.15). Проба (3) отобрана через 5 минут после введения добавки B_2O_3 (2,8 г). Полученное химическим анализом

94

общее содержание кислорода (2,1 мас.%) в электролите соответствует расчетной суммарной концентрации кислородных ионов, находящегося в начальном расплаве и введённого с добавкой В₂O₃ (таблица 4.7).

Рисунок 4.15 – Изменение напряжения при электролизе расплава KF-AlF₃-В₂O₃ при 700 °C и концентрации кислорода в пробах электролита

В течение первых двух часов электролиза установилось постоянное напряжение 2,49 В (рисунок 4.15). После увеличения напряжения до 2,63 В была отобрана проба 4, содержание кислорода в которой составило всего 0,19 мас.%. После введения добавки смеси оксидов Al₂O₃ (1,15 г) и B₂O₃ (0,75 г) напряжение на ячейке упало, при этом концентрация кислорода в пробе 5 увеличилась до ~1,0 мас.%, что в пересчёте на Al₂O₃ составляет 2,05 мас.%. Далее электролиз вели в течение часа до повторного увеличения напряжения. Концентрация кислорода в пробе 6 изменилась до 0,26 мас.%. Повторные добавки смеси Al₂O₃ и B₂O₃ всегда напряжения $2,35\pm0,02$ сопровождались падением до В И увеличением концентрации кислорода до ≈1,0 мас.%. В течение одного часа электролиза концентрация кислорода уменьшалась до 0,2 мас.%, что приводило к увеличению напряжения. В результате 5 часов электролиза был получен сплав Al-B с содержанием бора 7,5 мас.%.

	K	Al	O* (LECO)	О (расчёт)
помер прооы	мас.%	мас.%	мас.%	мас.%
1	21,63	14,30	0,57	-
2	28,98	16,20	0,60	-
3	23,20	12,20	2,09	1,98
4	23,60	15,30	0,20	-
5	-	-	-	0,96
6	23,43	13,80	0,26	-
7	-	-	-	1,00
8	24,80	14,00	0,23	
9	-	-	-	0,95
10	26,55	15,00	0,24	

Таблица 4.7. Содержание элементов в пробах электролита, полученное методом химического анализа

* - концентрация кислорода в пробах электролита

Таким образом, при данных условиях проведения электролиза происходит электрохимическое восстановление Al₂O₃ в течении одного часа с выходом по току 75-80 %. Расчет выхода по току приведен в Таблице 4.8.

Таблица 4.8. Выход по току в расчете на Al при электролизе расплава KF-AlF₃-B₂O₃-Al₂O₃ при 700 °C

№ участка между точками (рисунок 11)	т, час	т _о (теор.)	m _O (практич.)	ω, %
3-4	2.33	3.25	2.65	81.4
5-6	0.97	1.35	0.98	72.7
7-8	0.97	1.35	1.08	80.0
9-10	0.97	1.35	0.99	73.2
3-10	5.24	7.30	5.70	78.1

Элементный анализ на Al и K в пробах электролита и рассчитанное KO приведены на рисунке 4.16.

В течении всего электролиза КО электролита практически не меняется, т.е. процесс регенерации расплава от оксида алюминия не изменяет состав основного электролита, и КО остается постоянным в течение нескольких циклов очистки.

В первый час электролиза изменение концентраций К и Al происходит симбатно изменению напряжения (рисунок 4.16). Резкое увеличение содержания Al в точке $\tau = 40$ мин, а затем падение связано с процессами, происходящими в ячейке, а именно, с введением B_2O_3 и его расходованием. При этом мольное отношение (КО) фторидов калия к фториду алюминия остается практически постоянным.

Таким образом, в процессе электролиза расплава калиевого криолита, содержащего раствор B₂O₃, происходит постоянная регенерация электролита за счет электрохимического восстановления Al₂O₃.

4.3.3 Структура сплавов Al-B, полученных электролитическим восстановлением B₂O₃

Микроструктура сплавов, полученных электролизом расплава KF-AlF₃-B₂O₃ (KO=1,3) при 700 °C, представлена на микрофотографии (рисунок 4.17). Элементный анализ в разных точках приведён в таблице 4.9.

Рисунок 4.17 – Микрофотография образца сплава, полученного электролизом расплава KF-AlF₃-B₂O₃ (KO=1,3) при 700 °C

Таблица 4.9. Содержание элементов в пробе сплава, полученного электролизом системы KF-AlF₃-B₂O₃ (KO=1,3)

Спектр	В	0	Al	K	F	B/Al
1	66,08	0,68	33,24	0,00	0,00	1,99
2	64,26	0,66	35,08	0,00	0,00	1,83
3	66,34	0,43	33,08	0,04	0,11	2,01
4	0,00	1,59	97,79	0,00	0,00	-
5	0,00	1,52	26,47	24,70	47,30	-
6	0,00	1,12	25,41	25,58	47,88	-

В спектрах 1-3, которым соответствуют более темные участки, обнаружены В и Al в соотношении 2:1, что соответствует точной формуле интерметаллида AlB₂. Интерметаллид достаточно равномерно распределён по объёму алюминия. Особенно хорошо это просматривается на карте распределения элементов. Карты распределения элементов (Al, B, K, F, Fe, O) представлены на рисунке 4.18.

Рисунок 4.18 – Карты распределения элементов в образце сплава, полученного электролизом системы KF-AlF₃-B₂O₃ (KO=1,3)

Более светлые участки на микрофотографии образца сплава (рисунок 4.17) в спектре 4 содержат 98 ат.% алюминия. В спектрах 5 и 6 обнаружено высокое содержание К, F, и Al, что свидетельствует о том, что на этом участке присутствуют следы электролита.

На рисунке 4.18 заметно, что кислород сосредоточен в небольших количествах на участках присутствия электролита и практически отсутствует в объёме металла.

Выводы по разделу 4.3

1. Проведён электролиз расплава KF-AlF₃-B₂O₃ с KO=1,3 при температуре 700 °C, и получен сплав Al-B с высоким содержанием B (7,5 мас,%). Процесс электролиза протекает устойчиво с высоким выходом по току.

2. Определены технологические параметры получения сплава Al-B электролитическим восстановлением B₂O₃ в среде калиевого криолита:

- состав электролита: КF-AlF₃ с КО=1,3

- начальная добавка B₂O₃ в пересчёте на B/Al= 3 мас.%

- температура 700 °С

- плотность тока 0,3 A/см²

- в течение электролиза подгружаются добавки смеси Al₂O₃ и B₂O₃ в соотношении B/Al=1:1.

3. Процесс электролитического получения сплава Al-B сопровождается непрерывным восстановлением Al₂O₃, образующимся в результате реакции взаимодействия B₂O₃ и криолитового расплава, т.е. происходит регенерация электролита in situ в объёме электролизной ячейки.

ЗАКЛЮЧЕНИЕ

1. Впервые установлены закономерности изменения температуры ликвидуса от состава, а также изменения плотности, электропроводности, растворимости Al₂O₃ в легкоплавких криолитовых расплавах KF-AlF₃ и KF-NaF-AlF₃, содержащих KBF₄ и B₂O₃, в зависимости от состава и температуры. Показано, что исследуемые расплавы обладают достаточно высокой термической устойчивостью при температурах до 800 °C. Определены составы расплавленных смесей, сочетание физико-химических свойств которых определяет широкие перспективы их использования в процессе получения сплавов Al-B как алюмотермией, в качестве солевых флюсов, так и электролизом, в качестве электролита.

2. На основании физико-химических и спектроскопических исследований предложен двухстадийный механизм взаимодействия B_2O_3 с расплавленными криолитами KF-AlF₃ и KF-NaF-AlF₃ (KO = 1,3-1,5): реакция на первой стадии протекает с образованием KBF₄ и Al₂O₃, на второй стадии происходит образование фтороксоборатов K₂B₂OF₆ и K₃B₃O₃F₆. В системе KF-NaF-AlF₃-B₂O₃-Al₂O₃ образуется плохо растворимое соединение Na₂Al₂B₂O₇. При растворении KBF₄ в расплавах KF-AlF₃ и KF-NaF-AlF₃ образование новых соединений не происходит.

3. Разработан способ алюмотермического получения сплавов Al-B (с содержанием 1-2 мас. % В) восстановлением КВF₄ в среде солевых флюсов на основе легкоплавкого калиевого криолита. Показано, что при использовании флюсов предложенного состава, обладающих повышенными покровной (защитной) И рафинирующей функциями, оптимальной плотностью, обеспечивается более эффективное извлечение бора (до 70% при температурах 700-800 °C) по сравнению с традиционными хлоридно-фторидными флюсами, в среде которых процесс протекает при температуре на 100 °C выше, а степень извлечения бора составляет 30%.

4. Предложен новый способ получения сплава Al-B электролизом

расплава KF-AlF₃-B₂O₃ при 700 °C, который сопровождается непрерывной самопроизвольной регенерацией электролита. Установлены технологические параметры (плотность тока, температура, скорость подгрузки, длительность электролиза), и выявлены условия, обеспечивающие получение сплава Al-B с высоким содержанием бора (до 7,5 мас.%).

СПИСОК ЛИТЕРАТУРЫ

1. Напалков В.И. Непрерывное литьё алюминиевых сплавов / В.И. Напалков, Г.В. Черепок, С.В. Махов. - М.: Интермет Инжиниринг. - 2005. - С. 512

2. Попов Д.А. Альтернативные источники борсодержащего сырья для производства лигатуры Al–B (Обзор) / Д.А. Попов, Д.В. Огородов, А.В. Трапезников // Электронный научный журнал "ТРУДЫ ВИАМ". – 2015. - 10-7-7, dx.doi.org/ 10.18577/2307-6046-2015-0-10-7-7

3. Ткачева О.Ю. Низкотемпературный электролиз глинозема во фторидных расплавах: диссертация доктора химических наук. ИВТЭ УрО РАН, Екатеринбург, 2013.

4. Дедюхин А.Е. Легкоплавкие электролиты на основе системы KF– NaF–AlF₃ для получения алюминия: диссертация кандидата химических наук. ИВТЭ УрО РАН, Екатеринбург, 2009.

5. Дедюхин А.Е. Влияние NaF на электропроводность и температуру ликвидуса расплавленной системы KF–AlF₃ / А.Е. Дедюхин, А.П. Аписаров, О.Ю. Ткачева, А.А. Редькин, Ю.П. Зайков, А.В. Фролов, А.О. Гусев // Расплавы. - 2008.-№4. - С. 44–50.

 Дедюхин А.Е. Электропроводность расплавленной системы [(KF– AlF₃)–NaF]–Al₂O₃ / А.Е. Дедюхин, А.П. Аписаров, О.Ю. Ткачева, А.А. Редькин, Ю.П. Зайков, А.В. Фролов, А.О. Гусев // Расплавы. – 2009. - №2. – С. 18–22.

 Дедюхин А.Е. Растворимость Al₂O₃ в расплавленной системе KF– NaF–AlF₃. / А.Е. Дедюхин, А.П. Аписаров, О.Ю. Ткачева, А.А. Редькин, Ю.П.
 Зайков, А.В. Фролов, А.О. Гусев / Расплавы. - 2009. - №2. – С. 23–28.

 Аписаров А.П. Физико-химические свойства расплавленных электролитов KF-NaF-AlF₃/ А.П. Аписаров, А.Е. Дедюхин, А.А.Редькин, О.Ю. Ткачева, Ю.П. Зайков // Электрохимия. – 2010. - № 2. – С. 212–216.

9. Dedyukhin A. Alumina solubility and electrical conductivity in potassium cryolites with low CR / A. Dedyukhin, A. Apisarov, O. Tkacheva, Yu. Zaikov, A. Redkin // In "Molten Salts and Ionic liquids: Never the twain?" Ed. by M. Gaune-

Escard and K. Seddon. John Wiley & Sons. Inc. – 2010. – P. 75–84.

Apisarov A. Liquidus temperatures of cryolite melts with low cryolite ratio
 / A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tinghaev, O. Tkacheva, A. Redkin, Yu.
 Zaikov // Metallurgical and material Transaction B. – 2011. -V.42. - P. 236-242.

Redkin A. Resent developments in low-temperature electrolysis of aluminum / A. Redkin, A. Apisarov, A. Dedyukhin, V. Kovrov, Yu. Zaikov, O. Tkacheva, J. Hryn // ECS Transactions – 2012. – V. 50. – № 11. - P. 205–213.

Liu X. Visualization of alumina dissolution in cryolitic melts / X. Liu, C.F.
 Georg, V.A. Wills // Light Metals. - 1994. - P. 359-364.

13. Bagshaw A.N. The influence of alumina properties on its dissolution in smelting electrolyte / A.N. Bagshaw, B.J. Welch. // Light Metals. - 1986. - P. 35-39.

14. Kishel G.I. Further studies of alumina dissolution under conditions similar to cell operation / G.I. Kishel, B.J. Welch// Light Metals. – 1991. - P. 299-305.

15. Walker D.I. Behaviour of powder agglomerates upon addition to cryolitebased electrolytes / D.I. Walker, T.A. Utigard, J.M. Toguri // Light Metals. - 1992.- P. 23-37.

16. Matiasovsky K. Specific electrical conductivity of molten fluorides / K. Matiasovsky, M. Malinovsky, V. Danek // Electrochemica Acta. - 1970. -V.15.–P. 25.

17. Смирнов М.В. Электропроводность расплавленных фторидов щелочных металлов / М.В. Смирнов, Ю.А. Шумов, В.А. Хохлов // Электрохимия расплавленных и твердых электролитов. Труды института электрохимии. Свердловск. - 1972. - Вып. 18. - С. 3.

18. Kryukovsky V. Electrical conductivity of low melting cryolite melts / V. Kryukovsky, A. Frolov, O. Tkacheva, A. Redkin, Yu. Zaikov, V. Khokhlov, A. Apisarov // Light metals. - 2006. - P. 409.

19. Аписаров А.П. Электропроводность низкотемпературного расплавленного электролита KF–AlF₃ с добавками LiF и Al₂O₃ / А.П. Аписаров, В.А. Крюковский, Ю.П. Зайков, А.А. Редькин, О.Ю. Ткачева, В.А. Хохлов // Электрохимия. – 2007. – Т. 43. – №8. – С. 916.

20. Chrenkova M. Density and viscosity of the (LiF–NaF–KF)_{eut}–KBF₄–B₂O₃ melts / M. Chrenkova, V. Danek, R. Vasiljev, A. Silny, V. Kremenetsky, E. Polyakov //

J. Molecular Liquids. - 2003. - V. 102. - P. 213-226.

21. ГОСТ Р 50.2.038-2004. Измерения прямые однократные. Оценивание погрешностей и неопределенности результата измерений. Москва, 2011 – 8 с.

22. Konijnendijk W.L. The structure of borate glasses studied by Raman scattering / W.L. Konijnendijk, J.M. Stevels // J. Non-Crystalline Solids. – 1975. - № 18. - P. 307-331.

23. Walrafen G.E. Raman investigation of vitreous and molten boric oxide /
G.E. Walrafen, S.R. Samanta, P.N. Krishnanb // J. Chem. Phys. - 1980. – V. 72 - P.113–
116.

24. Patarak O. Phase diagram of the system $KBF_4-KF-KC1 / O.$ Patarak, V. Danek // Chem. Papers. – 1992. – V. 46. - No 2. – P. 91–94.

25. Chrenkova M. Volum properties of molten KF–KCl–KBF₄ system. / M. Chrenkova, V. Danek // Chem. Papers. – 1991. - V. 45. - № 2. – P. 213–219.

26. Chrenkova M. Densities of melts of the system LiF-KF-B₂O₃-TiO₂ / M. Chrenkova, V. Danek, A. Silny // Chem. Papers. $-1992. - V. 46. - N_{2} 6. - P. 378-381.$

27. Chrenkova M. Phase diagram of the system LiF– B_2O_3 / M. Chrenkova, V. Danek // Chem. Papers. – 1992. – V. 46. - No 3. – P. 167-169.

28. Chrenkova M. Phase diagram in the system LiF–KF- B2O3-TiO2 / M. Chrenkova, V.Danek // Chem. Papers. – 1992. – V. 46. - № 4. – P. 222-225.

29. Makyta M. Cryoscopy of B_2O_3 in molten alkali metal fluorides / M. Makyta // Chem. Papers. – 1993. – V. 47. - No 5. – P. 306-309.

Беляев А.И. Физико–химические процессы при электролизе алюминия
 / А.И. Беляев – М.: Металлургиздат, 1947. –С. 248.

31. Девяткин С.В. Физическое, химическое и электрохимическое поведение оксида бора в криолит–глиноземных расплавах / С.В. Девяткин, Г. Каптай // Прикладная электрохимия. – 2002. – Т. **75**. – № 4. – С. 565–568.

32. Barton C. J. Phase relations in fluoroborate systems I: Material preparation and the systems NaF-NaBF₄ and KF-KBF₄ / C. J. Barton, L. O. Gilpatrick, J. A. Bornmann, H. H. Stone, T. N. McVay // Journal of Inorganic and Nuclear Chemistry. – 1971. – V. 33. – Issue 2. – P. 337-343.

33. Селиванов В.Г. Термический анализ систем КВF₄-KF-B₂O₃ и NaBF₄-NaF-B₂O₃ / В.Г. Селиванов // Изв. Вузов. Цв. металлургия. - 1960. - №3. - С. 112.

34. Maya L. Crystalline compounds and glasses in the system B_2O_3 -NaF-NaBF₄ / L. Maya // J. of the American Ceramic Society. – 1977. - V. 60. - N_2 7-8. - P.323-328.

35. Напалков В.И. Легирование и модифицирование алюминия и магния / В.И. Напалков, С.В. Махов - М.: МИССИС. – 2002 - 375 с. ISBN 5-87623-100-2.

36. Павликов В.Н. Система NaF-B₂O₃ / В.Н. Павликов, В.А. Юрченко,
Е.С. Луговская, Н.Л. Коробанова, С.Г. Тресвятский // ЖНХ. – 1974. – Т. 19. - Вып.
6. – С. 1597-1560.

37. Khokhlov, V. Heat capacity and thermal conductivity of molten ternary lithium, sodium, potassium, and zirconium fluorides mixtures / V. Khokhlov, I. Korzun, V. Dokutovich, E. Filatov // Journal of Nuclear Materials. – 2011. - V. 410. - Issues 1–3. – P. 32-38.

38. Chen R. Phase Diagram of the System KF–AlF₃ / R. Chen, G. Wu, Q. Zhang // Am. Ceram. Soc. – 2000. – V. 83. - № 12. – P. 3196–98.

39. Mullabaev A. Properties of the LiCl-KCl-Li₂O system as operating medium for pyrochemical reprocessing of spent nuclear fuel / A. Mullabaev, O. Tkacheva, V. Shishkin, V. Kovrov, Yu. Zaikov, L. Sukhanov, Yu. Mochalov // Journal of Nuclear Materials 500. – 2018. – P. 235-241.

40. Катаев А.А. Температура ликвидуса фторидных систем (KF-AlF₃)-KBF₄, (KF-NaF-AlF₃)-KBF₄ и [(KF-NaF-AlF₃)-KBF₄]-Al₂O₃ / A.A. Катаев, A.B. Руденко, О.Ю. Ткачева, Ю.П. Зайков // IV Международная научно-практическая конференция "Научные перспективы XXI века. Достижения и перспективы нового столетия". Россия. Новосибирск. 15-16.08. Ежемесячный научный журнал– 2014. – №3. – Ч. 6. – С. 141-143.

41. Катаев А.А. Термическая Устойчивость КВF₄ в легкоплавких криолитовых расплавах / А.А. Катаев, А.В. Руденко, О.Г. Резницких, Н.Г. Молчанова, А.Е. Дедюхин, А.А. Редькин, О.Ю. Ткачева, Ю.П. Зайков // Расплавы. – 2014. - № 6. С. 16-22.

42. Катаев А.А. Температура ликвидуса борсодержащих электролитов для

получения Al-B сплавов / А.А. Катаев, О.Ю. Ткачева, А.Е. Дедюхин, А.В. Руденко, Ю.П. Зайков // Труды Международной научно-практической конференции «Современные тенденции в области теории и практики добычи и переработки минерального и техногенного сырья», Россия, г. Екатеринбург, 5-7.11.2014 г., с 263-267.

43. Chin D.A. Liquidus curves for aluminum cell electrolyte. IV. System Na_3AlF_6 and $Na_3AlF_6-Al_2O_3$ with MgF₂, Li_3AlF_3 , and K_6AlF_6 / D.A. Chin, E.A. Hollingshead // J. Electrochem. Soc. - 1966. – V.113. – P. 736.

44. Руденко А.В. Растворимость Al₂O₃ в расплавах (KF-NaF-AlF₃)-KBF₄ / А.В. Руденко, А.А. Катаев, Ю.П. Зайков // Тезисы III Международная научнопрактическая конференция «Теория и практика современных электрохимических производств», Россия, г.Санкт-Петербург, 17-19.11.2014 г., с 204-205.

45. Tkacheva O. Physical-chemical properties of potassium cryolite-based melts containing KBF₄ / O. Tkacheva, A. Kataev, A. Redkin, A. Rudenko, A. Dedyukhin, Yu. Zaikov // ECS Transactions. – 2014. – V. 64. – Issue 4. – P. 129-133.

46. Катаев А.А. Возможности использования криолитовых расплавов в качестве среды для получения сплавов Al-B / A.A. Катаев, О.Ю. Ткачева, А.А. Редькин, А.Е. Дедюхин, Ю.П. Зайков // Тезисы докладов XX Менделеевского съезда, Екатеринбург 26 - 30 сентября 2016, т. 3, с 160.

47. Gliesse P.J.M. The system Al₂O₃-B₂O₃ / P.J.M. Gliesse, W.R. Foster // Nature. - 1962. – V.195.- №. 4836 - P. 69-70.

48. Janz G. Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data / G. Janz // J. Phys Chem. Ref. Data. – 1988 - 17(2). – P. 1.

49. Kataev A. The Behavior of KBF₄ in Potassium-Cryolite-Based Melts / A. Kataev, O. Tkacheva, A. Redkin, A. Rudenko, A. Dedyukhin, Yu. Zaikov // J. Electrochem. Soc. – 2015. - V. 162(4). -P. H283–H286.

50. Dedyukhin A. Density and Molar Volume of KF-NaF-AlF₃ Melts with Al_2O_3 and CaF_2 Additions / A. Dedyukhin, A. Kataev, A. Redkin, Yu. Zaikov // ECS

Trans. – 2014. - V. 64(4). – p. 151-159.

51. Осипова Л.М. Структура расплава В₂О₃ по данным спектроскопии комбинационного рассеяния / Л.М. Осипова, А.А. Осипов, В.Н. Быков // Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» - 2003. № 1(21). — URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/informbul-1/magm-34.pdf.

52. Goubeau F.L. Raman-Spectren und Structur von Boroxol-Verbindungen /
F.L. Goubeau, H Keller // Z. Anorg. Allg. Chem. – 1953. - V. 272. - № 5-6. - P. 303-312.

53. Galeener F.L. Jr. Vibrational spectra and structure of pure vitreous B_2O_3 / F.L. Galeener, G. Lucovsky, J.C. Mikkelsen // The American Physical Society, Physical Review B. – 1980. - V. 22. - No 8. - P. 3983-3990.

54. Krogh-Moe J. Interpretation of infrared spectra of boron oxide and alkali borate glasses / J. Krogh-Moe // Phys. Chem. Glasses. – 1965. – P. 46–54.

55. Soppe W. New insights into the structure of B₂O₃ glass / van der C Marel, van W.F Gunsteren, den H.W Hartog // J. non-Cryst. Solids. – 1988. - V. 103. - № 213.
- P.201.

56. Babushkina O. Raman and infrared spectroscopic studies of (NaF-KF)- K_2MoO_4 - B_2O_3 melts and the mechanism of electrodeposition of molybdenum / O. Babushkina, G. Voyiatzis, T. Østvold // Acta Chem. Scand. - 1999. –V. 53. – P. 320–328.

57. von Barner J. H. Vibrational spectroscopic study on fluorooxoborate formation in fluoride melts: Indications of $B_2OF_6^{2-}$ and $B_3O_3F_6^3$ / J.H. von Barner, K.B. Andersen, R.W. Berg // J. Mol. Liq. – 1999. – V. 83 - P. 141–151.

58. Guopeng H. Fluorooxoborates: Ushering in a New Era of Deep Ultraviolet Nonlinear Optical Materials / H. Guopeng, W. Ying, Zh. Bingbing, P. Shilie // Chem. Eur. J. 10.1002/chem.201802787

59. Cakmak G. $Na_3B_3O_3F_6$: Synthesis, Crystal Structure, and Ionic Conductivity / G. Cakmak, T. Pilz, M. Jansen // Z. Anorg. Allg. Chem. - 2012. – V. 638. - P.1–6.
60. Auguste F. The Dissociation of Fluoroaluminates in FLiNaK and CsF – KF Molten Mixtures: A Raman Spectroscopic and Solubility Study / F. Auguste, O. Tkatcheva, H. Mediaas, T. Østvold, B. Gilbert // Inorganic Chemistry. - 2003. - V. 42. -№. 20. - P. 6338–6344.

61. Knyazyan N. B. Oxyfluoride borate glasses / N.B. Knyazyan // Proceedings of State Engineering University of Armenia, Chemical and Environmental Technologies. -2012. – Issue 15. – No 2. – P. 9–31.

62. Fischer R. Crystal structure of synthetic $Al_4B_2O_9$: a member of the mullite family closely related to boralsilite / R. Fischer, V. Kahlenberg, D. Voll, K. Mac Kenzie, M. Smith, B. Schnetger, H. Brumsack, H. Schneider, // Am. Mineral. - 2008 - P. 918–927.

63. Fisch M. Crystal-chemistry of mullite-type aluminoborates $Al_{18}B_4O_{33}$ and Al_5BO_9 : a stoichiometry puzzle / M. Fisch, T. Armbruster, D. Rentsch, E. Libowitzky, T. Pettke, J. // Solid State Chem. – 2011. - P. 70–80.

64. Robert, E. Structure and Thermodynamics of Alkali Fluoride – Aluminum Fluoride – Alumina Melts. Vapor Pressure, Solubility, and Raman Spectroscopic Studies / E. Robert, J.E. Olsen, V. Danek, E. Tixhon, T. Ostvold, B. Gilbert, // J. Phys. Chem. B. – 1997. – V. 101. – P. 9447–9451.

65. Wu H. Borate fluoride and fluoroborate in alkali-metal borate prepared by an open high-temperature solution method / H. Wu, H. Yu, Q. Bian, Z. Yang, S. Han, S. Pan // Inorg. Chem. 2014. – V. 53. - P. 12686–12688.

66. Kataev A. Interaction of B_2O_3 with molten KF-AlF₃ and KF-NaF-AlF₃ / A. Kataev, O. Tkacheva, I. Zakiryanova, A. Apisarov, A. Dedyukhin, Y. Zaikov, // Journal of Molecular Liquids. - 2017. –V. 231. - P. 149 – 153.

67. Utigard T.A. The production of Al-B, Al-Ti, and Al-Ti-B alloys by electrolysis / T.A. Utigard, Qing Bin Wei, J.M. Toguri // A volume in Proceedings of Metallurgical Society of Canadian Institute of Mining and Metallurgy. - 1990. - P. 49-57.

68. Осинцев О. Диаграммы состояния двойных и тройных систем. Фазовые равновесия в сплавах / О. Осинцев // М.: Машиностроение. - 2009. - С. 352.

69. Carlson O. The AI-B (Aluminum-Boron) System / O.N. Carlson // Bulletin of Alloy Phase Diagrams. – 1990. – V. 11. – P. 560-566.

70. Haenni M. Boron in Aluminum and Aluminum Alloys / M.E. Haenni // Rev. Metall. (Paris). – 1926. – V. 23. – P. 342-352.

71. Meissner K. Aluminum-Boron Alloys / K.L. Meissner // Z Metallkd (German). – 1926. – V. 18. – P. 324-325.

72. Serebryanskii T. Concerning the Constitutional Diagram of the System Aluminum-Boron / T. Serebryanskii, V.A. Eperbaum, G.S. Zhdanov // Dokl. Akad, Nauk SSSR. – 1961. – V. 141. – P. 1244-1246.

73. Hoffman W. Contribution to the Knowledge of the Aluminum-Boron System / W. Hoffman, W. Janiche // Z. Metallkd (German). – 1936. – V. 28. – P. 1-5.

74. Serebryanskii, V. T. Equilibrium Diagram of the Aluminum-Boron System
/ V.T. Serebryanskii, V.Z. Eperbaum, G.S. Zhandov, // Russ J. Inorg. Chem. – 1967. –
V. 12. – P. 1311-1316.

75. Murray J.L. Binary Alloy Phase Diagrams / J.L. Murray // ALCOA Tech. Center, private communication. – 1989.

76. Maxwell I. The Constitution of the System Al-Ti-B with Reference to Aluminum-Base Alloys / I. Maxwell, A. Hellawell // Metall. Trans. – 1972. – V. 3. – P. 1487-1493.

77. Fjellstedt J. Experimental investigation and thermodynamic assessment of the Al-rich side of the Al–B system / J. Fjellstedt, A.E.W. Jarfors, T. El-Benawy //Materials & Design. – 2001. – V. 22. – P. 443–449.

78. Giardini A. A. Vector Hardness Properties of Boron and Aluminum Borides Boron: Synthesis, Structures and Properties / A.A. Giardini, J.A. Kohn, L. Toman, D.W. Eckart, W.E Nye, G.K. Gaulle // Plenum Press, New York. – 1960. – P. 140-157.

79. Duschanek H. The Al-B (Aluminum-Boron) System / H. Duschanek, P. Rogl // Journal of Phase Equilibria. – 1994. – V. 15. – P. 543-552.

80. Khaliq A. Analysis of boron treatment for V removal using AlB₂ and AlB₁₂

based master alloy / A. Khaliq, M.A. Rhamdhani, G.A. Brooks, J. Grandfield // Light Metals. – 2014. – P. 963-968.

 Hoard J. An Analysis of Polymorphism in Boron Based upon X-ray Diffraction Results / J.L. Hoard, E. Newkirk // J. Am. Soc. Chem. – 1960. – V. 82. – P. 70-76.

82. Hoard J. The Beta-Rhombohedral Boron Structure / J.L. Hoard, R.E. Hughes // Boron: Preparation, Properties, and Applications, G.K. Gaulle, EcL, Plenum Press, New York. – 1965. – P. 81-95.

83. Chen Z. Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al–B master alloy / Z. Chen, T. Wang, L. Gao, H. Fu, T. Li // Materials Science and Engineering. – 2012. – A. 553. – P. 32–36.

84. Birol, Y. Al–Ti–B grain refiners via powder metallurgy processing of $Al/K_2TiF_6/KBF_4$ powder blends / Y. Birol // J. Alloys and Compounds. – 2009. – V. 480. – P. 311–314.

85. Birol Y. Production of Al–B alloy by heating Al/KBF₄ powder blends / Y.
Birol // J. Alloys and Compounds. – 2009. – V. 481. – P. 195–198.

86. Wang Q. Production of Al–B master alloys by mixing KBF₄ salt into molten aluminum / Q. Wang, H. Zhao, Zh. Li, L. Shen, J. Zhao // Trans. Nonferrous Met. Soc. China. – 2013. – V. 23. – P. 294–300.

87. Крымов А.П. Разработка технологии получения лигатуры Al-Ti-B /А.П. Крымов, В.В. Нерубащенко, В.В. Волейник, В.И. Напалков, С.Г. Бурдин // Цветные металлы. - 1979. - №9. - С.81–81.

 Savas Ö. A Taguchi optimisation for production of Al–B master alloys using boron / Ö. Savas, R. Kayikci // Journal of Alloys and Compounds. - 2013. – V. 580 - P. 232–238.

89. Utigard T. The properties and uses of fluxes in molten aluminum processing /T. Utigard, K. Friesen, R. Roy, J. Lim, A. Silny, C. Dupuis // JOM. – 1998.
– V. 50. – P. 38-43.

90. Коротков В.Г. Рафинирование литейных алюминиевых сплавов / В.Г.
 Коротков - М.: Машгиз. - 1963 – С. 126.

91. Альтман М.В. Плавка и литье легких сплавов / М.В. Альтман, А.А. Лебедев, М.В. Чухров. – Изд. 2-е, перераб. и доп. – М.: Металлургия, 1969. – 680 с.

92. Thonstad J. Aluminium Electrolysis: Fundamentals of the Hall-Heroult process. 3rd edition / J. Thonstad, P. Fellner, G. M. Haarberg, J. Hives, H. Kvande, Ă. Sterten // Aluminium-Verlag Marketing and Kommunikation GmbH. - Dusseldorf. - 2001. – P. 153.

93. Moldovan P. Thermodynamics of interactions in Al-K₂TiF₆-KBF₄ system /
P. Moldovan, M. Butu, G. Popescu, M. Buzatu, E. Usurelu, V. Soare, D. Mitrica //
Revista de Chimie. – 2010. – V. 61. – P. 828–832.

94. Kataev, A. The Behavior of KBF_4 in Potassium-Cryolite-Based Melts / A. Kataev, O. Tkacheva, A. Redkin, A. Rudenko, A. Dedyukhin, Yu. Zaikov // Journal of The Electrochemical Society. – 2015. – V. 162. - N_{24} . – P. 283-286.

95. Ткачева О.Ю. Флюсы для получения сплавов алюминий-бор / О.Ю. Ткачева, А.А. Катаев, А.А. Редькин, А.В. Руденко, А.Е. Дедюхин, Ю.П. Зайков // Расплавы. – 2016. – № 5. – С. 387-396.

96. Катаев А. Получение Сплавов АІ-В в Расплавленных Солях / А.А. Катаев, А.В. Суздальцев, О.Ю. Ткачева, Ю.П. Зайков // Труды Кольского научного центра РАН. – 2015. – Вып. 5. – №31. – С. 139-143.

97. Катаев, А. Получение сплавов Al–B с использованием альтернативных флюсов / А.А. Катаев, А.В. Суздальцев, В.А. Ковров, О.Ю. Ткачева, Ю.П. Зайков // Труды VII Международного Конгресса и Выставки «Цветные металлы и минералы. – Красноярск: – 2015. – С. 515-522.

98. Катаев А.А. Металлотермическое получение сплавов Al-B с использованием фторидных флюсов / А.А. Катаев, О.Ю. Ткачева, Ю.П. Зайков // Материалы IV международной научно-технической конференции «Металлургия цветных металлов», 30 ноября-01 декабря 2018 г. – С. 48-51.

99. Катаев А.А. Получение лигатуры Al-B алюмотермическим восстановлением KBF₄ и B₂O₃ в среде расплавленных солевых флюсов / A.A. Катаев, О.Ю. Ткачёва, Н.Г. Молчанова, Ю.П. Зайков // Известия вузов. Цветная

металлургия. 2019. - № 3 – С. 20-29.

100. Пат. RU2610182C2 Российская Федерация. Способ получения лигатурного сплава алюминий-бор / Ю.П. Зайков, О.Ю. Ткачева, А.А. Катаев, М.Ю. Микрюков, А.В. Суздальцев, Ю.М. Штефанюк, В.Х. Манн, Опубликовано: 08.02.2017